selu_op.cc 4.8 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/selu_op.h"
16
#include <memory>
C
chengduo 已提交
17
#include <string>
18
#include <unordered_map>
C
chengduo 已提交
19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

class SeluOp : public framework::OperatorWithKernel {
 public:
  SeluOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
31 32
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "selu");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "selu");
C
chengduo 已提交
33 34 35 36 37 38 39 40 41

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
42
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
C
chengduo 已提交
43 44 45 46 47
  }
};

class SeluOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
48
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
49
      const override {
50 51
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  }
};

class SeluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor of selu operator.");
    AddOutput("Out", "The output tensor of selu operator.");
    AddAttr<float>("scale",
                   "(float) the default value is 1.0507~. For more "
                   "information about this value, please refer to:"
                   "https://arxiv.org/abs/1706.02515.")
        .SetDefault(1.0507009873554804934193349852946);
    AddAttr<float>("alpha",
                   "(float) the default value is 1.6732~. For more "
                   "information about this value, please refer to:"
                   "https://arxiv.org/abs/1706.02515.")
        .SetDefault(1.6732632423543772848170429916717);
    AddComment(R"DOC(
Selu Operator.

The equation is:
$$
f(x) =\lambda*
\begin{cases}
 \quad \quad   x,  \quad \quad \quad \text{if} \ x > 0 \\
 \alpha * e^x - \alpha,  \qquad  \text{if} \ x <= 0
\end{cases}
$$

The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD information with input `X`.
)DOC");
  }
};

H
hong 已提交
88 89
template <typename T>
class SeluGradMaker : public framework::SingleGradOpMaker<T> {
C
chengduo 已提交
90
 public:
H
hong 已提交
91
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
C
chengduo 已提交
92

93
  void Apply(GradOpPtr<T> grad_op) const override {
C
chengduo 已提交
94
    grad_op->SetType("selu_grad");
H
hong 已提交
95 96 97
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
C
chengduo 已提交
98 99 100 101 102 103 104 105 106
    grad_op->SetAttrMap(this->Attrs());
  }
};

class SeluGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
107 108 109
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "selu_grad");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "selu_grad");
C
chengduo 已提交
110 111 112 113 114 115 116 117
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("Out"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
118
        OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace());
C
chengduo 已提交
119 120 121 122 123 124 125 126 127
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(selu, ops::SeluOp, ops::SeluOpMaker, ops::SeluOpInferVarType,
H
hong 已提交
128 129
                  ops::SeluGradMaker<paddle::framework::OpDesc>,
                  ops::SeluGradMaker<paddle::imperative::OpBase>);
C
chengduo 已提交
130 131 132 133 134 135 136
REGISTER_OPERATOR(selu_grad, ops::SeluGradOp);
REGISTER_OP_CPU_KERNEL(
    selu, ops::SeluKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SeluKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    selu_grad, ops::SeluGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SeluGradKernel<paddle::platform::CPUDeviceContext, double>);