pool_op.h 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/pooling.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename Place, typename T>
class PoolKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
31 32
    const Tensor* in_X = context.Input<Tensor>("X");
    Tensor* out = context.Output<Tensor>("Out");
33

34 35
    int global_pooling = context.Attr<int>("globalPooling");
    std::string pooling_type = context.Attr<std::string>("poolingType");
36 37 38 39 40
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    if (global_pooling == 1) {
      for (size_t i = 0; i < ksize.size(); ++i) {
41
        ksize[i] = in_X->dims()[i + 2];
42 43 44 45 46 47 48 49 50 51
      }
    }

    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
          paddle::operators::math::Pool2dForwardFunctor<
              Place, paddle::operators::math::pool::maxPool<T>, T>
              pool2d_forward;
          paddle::operators::math::pool::maxPool<T> pool_process;
52 53
          pool2d_forward(context.device_context(), *in_X, *out, ksize, strides,
                         paddings, pool_process);
54

C
chengduoZH 已提交
55
        } else if (pooling_type == "avg") {
56
          paddle::operators::math::Pool2dForwardFunctor<
C
chengduoZH 已提交
57
              Place, paddle::operators::math::pool::avgPool<T>, T>
58
              pool2d_forward;
C
chengduoZH 已提交
59
          paddle::operators::math::pool::avgPool<T> pool_process;
60 61
          pool2d_forward(context.device_context(), *in_X, *out, ksize, strides,
                         paddings, pool_process);
62 63 64 65 66 67 68 69
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
          paddle::operators::math::Pool3dForwardFunctor<
              Place, paddle::operators::math::pool::maxPool<T>, T>
              pool3d_forward;
          paddle::operators::math::pool::maxPool<T> pool_process;
70 71
          pool3d_forward(context.device_context(), *in_X, *out, ksize, strides,
                         paddings, pool_process);
C
chengduoZH 已提交
72
        } else if (pooling_type == "avg") {
73
          paddle::operators::math::Pool3dForwardFunctor<
C
chengduoZH 已提交
74
              Place, paddle::operators::math::pool::avgPool<T>, T>
75
              pool3d_forward;
C
chengduoZH 已提交
76
          paddle::operators::math::pool::avgPool<T> pool_process;
77 78
          pool3d_forward(context.device_context(), *in_X, *out, ksize, strides,
                         paddings, pool_process);
79 80 81 82 83 84 85 86 87 88
        }
      } break;
    }
  }
};

template <typename Place, typename T>
class PoolGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
89 90 91 92
    const Tensor* in_X = context.Input<Tensor>("X");
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
93
    Tensor* in_X_grad = context.Output<Tensor>(framework::GradVarName("X"));
94 95 96

    int global_pooling = context.Attr<int>("globalPooling");
    std::string pooling_type = context.Attr<std::string>("poolingType");
97 98 99 100 101
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

    if (global_pooling == 1) {
102
      for (size_t i = 0; i < ksize.size(); ++i) ksize[i] = in_X->dims()[i + 2];
103 104
    }

105 106 107
    if (in_X_grad) {
      in_X_grad->mutable_data<T>(context.GetPlace());
      auto temp = framework::EigenVector<T>::Flatten(*in_X_grad);
108 109 110 111 112 113 114
      temp.device(context.GetEigenDevice<Place>()) =
          temp.constant(static_cast<T>(0));

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
            paddle::operators::math::Pool2dBackwardFunctor<
C
chengduoZH 已提交
115
                Place, paddle::operators::math::pool::maxPoolGrad<T>, T>
116
                pool2d_backward;
C
chengduoZH 已提交
117
            paddle::operators::math::pool::maxPoolGrad<T> pool_process;
118 119
            pool2d_backward(context.device_context(), *in_X, *in_X_grad, *out,
                            *out_grad, ksize, strides, paddings, pool_process);
C
chengduoZH 已提交
120
          } else if (pooling_type == "avg") {
121
            paddle::operators::math::Pool2dBackwardFunctor<
C
chengduoZH 已提交
122
                Place, paddle::operators::math::pool::avgPoolGrad<T>, T>
123
                pool2d_backward;
C
chengduoZH 已提交
124
            paddle::operators::math::pool::avgPoolGrad<T> pool_process;
125 126
            pool2d_backward(context.device_context(), *in_X, *in_X_grad, *out,
                            *out_grad, ksize, strides, paddings, pool_process);
127 128 129 130 131
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
            paddle::operators::math::Pool3dBackwardFunctor<
C
chengduoZH 已提交
132
                Place, paddle::operators::math::pool::maxPoolGrad<T>, T>
133
                pool3d_backward;
C
chengduoZH 已提交
134
            paddle::operators::math::pool::maxPoolGrad<T> pool_process;
135 136
            pool3d_backward(context.device_context(), *in_X, *in_X_grad, *out,
                            *out_grad, ksize, strides, paddings, pool_process);
C
chengduoZH 已提交
137
          } else if (pooling_type == "avg") {
138
            paddle::operators::math::Pool3dBackwardFunctor<
C
chengduoZH 已提交
139
                Place, paddle::operators::math::pool::avgPoolGrad<T>, T>
140
                pool3d_backward;
C
chengduoZH 已提交
141
            paddle::operators::math::pool::avgPoolGrad<T> pool_process;
142 143
            pool3d_backward(context.device_context(), *in_X, *in_X_grad, *out,
                            *out_grad, ksize, strides, paddings, pool_process);
144 145 146 147 148 149 150 151 152
          }
        } break;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle