pool_mkldnn_op.cc 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
xiaoli.liu@intel.com 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24
using framework::DataLayout;
using mkldnn::memory;
25
using mkldnn::pooling_backward;
26 27 28 29 30
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
31 32

// Generate keys for storing/retriving primitives for this operator
33 34 35 36 37 38
std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
                      const memory::dims& input_dims,
                      const std::string& pooling_type,
                      const std::vector<int>& ksize,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
39 40
                      const memory::data_type& dt, const memory::format& fmt,
                      const std::string& suffix) {
41 42 43 44 45 46 47 48
  std::string key;
  key.reserve(platform::MKLDNNHandler::MaxKeyLength);
  platform::MKLDNNHandler::AppendKeyDims(&key, input_dims);
  platform::MKLDNNHandler::AppendKey(&key, pooling_type);
  platform::MKLDNNHandler::AppendKeyVec(&key, ksize);
  platform::MKLDNNHandler::AppendKeyVec(&key, strides);
  platform::MKLDNNHandler::AppendKeyVec(&key, paddings);
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(dt));
49
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(fmt));
50
  platform::MKLDNNHandler::AppendKey(&key, suffix);
51 52
  if (platform::get_cur_mkldnn_session_id() ==
      platform::kMKLDNNSessionID_Default) {
53 54 55 56 57 58
    auto tid = std::this_thread::get_id();
    std::stringstream ss;
    ss << tid;
    platform::MKLDNNHandler::AppendKey(&key, "-t:");
    platform::MKLDNNHandler::AppendKey(&key, ss.str());
  }
59
  return key;
60 61
}

62 63
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                      int padding, int stride) {
64 65 66
  return (input_size - kernel_size + 2 * padding) / stride + 1;
}

67 68 69 70 71 72
static inline void CorrectOutputSize(
    const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
    const std::vector<int>& kernel_size, const std::vector<int>& paddings,
    const std::vector<int>& strides,
    std::vector<int>& right_bot_padding) {  // NOLINT
  for (size_t i = 0; i < right_bot_padding.size(); i++) {
73 74 75 76 77 78 79 80
    int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                           paddings[i], strides[i]);
    if (desired_size != dst_tz[i + 2]) {
      right_bot_padding[i] += strides[i];
    }
  }
}

81 82 83 84 85 86 87 88 89 90 91 92 93
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

94 95 96
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
97 98 99 100 101

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
102
    bool is_test = ctx.Attr<bool>("is_test");
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

123 124 125
    auto input_format = input->format();
    memory::format output_format{memory::format::format_undef};

126 127
    mkldnn::memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(input->type());
128 129 130 131
    auto fmt = input->format();
    const std::string key =
        CreateKey(ctx, src_tz, pooling_type, ksize, strides, paddings, dt, fmt,
                  ctx.op().Output("Out"));
132 133 134 135 136 137
    const std::string key_pool_p = key + "@pool_p";
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
138

139 140 141 142
    std::shared_ptr<mkldnn::memory> src_memory, dst_memory;
    std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd;
    std::shared_ptr<mkldnn::memory> pool_src_memory_p, pool_dst_memory_p;

143 144 145
    auto pool_p =
        std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
    if (pool_p == nullptr) {
146 147 148 149 150 151 152
      const std::vector<int>& padding_left_top(paddings);
      std::vector<int> padding_right_bottom(paddings);
      bool ceil_mode = ctx.Attr<bool>("ceil_mode");
      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          padding_right_bottom);
      }
X
xiaoli.liu@intel.com 已提交
153 154

      auto src_md = platform::MKLDNNMemDesc(src_tz, dt, input_format);
155

156 157 158 159
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */
X
xiaoli.liu@intel.com 已提交
160 161 162 163 164
      auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dt, mkldnn::memory::format::any);
      auto propagation = src_md.data.data_type == mkldnn_f32
                             ? mkldnn::prop_kind::forward_training
                             : mkldnn::prop_kind::forward_scoring;
165
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
X
xiaoli.liu@intel.com 已提交
166 167 168
          CreatePrimitiveDesc(src_md, dst_md, propagation, strides,
                              padding_left_top, padding_right_bottom, ksize,
                              pooling_type, mkldnn_engine, ceil_mode, is_test);
169 170

      // save pool_pd into global device context to be referred in backward path
171
      if (!is_test) dev_ctx.SetBlob(key_pool_pd, pool_pd);
172

173 174 175
      src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
                                            to_void_cast<T>(input_data));
      dst_memory =
176
          std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
177

178 179 180
      dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);

181 182 183 184 185 186 187 188 189 190 191 192 193
      if (is_test) {
        pool_p = std::make_shared<pooling_forward>(*pool_pd, *src_memory,
                                                   *dst_memory);
      } else {
        std::shared_ptr<mkldnn::memory> workspace_memory =
            CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);

        // save pool_workspace_memory to be referred in backward path
        dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);

        pool_p = std::make_shared<pooling_forward>(
            *pool_pd, *src_memory, *dst_memory, *workspace_memory);
      }
194 195

      dev_ctx.SetBlob(key_pool_p, pool_p);
196 197 198

      output_format =
          (memory::format)dst_memory->get_primitive_desc().desc().data.format;
199 200
    } else {
      // Primitives already exist
201
      pool_src_memory_p =
202 203 204
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(pool_src_memory_p != nullptr,
                     "Fail to find pooling src mem_p in device context");
205
      pool_dst_memory_p =
206 207 208
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
      PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
                     "Fail to find pooling dst mem_p in device context");
209
      pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
210
      pool_dst_memory_p->set_data_handle(output_data);
211 212 213 214

      output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
                          .desc()
                          .data.format;
215
    }
216 217

    // push primitive to stream and wait until it's executed
218
    std::vector<mkldnn::primitive> pipeline{*pool_p};
219 220 221 222
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
223 224 225 226 227
  }

 private:
  std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
X
xiaoli.liu@intel.com 已提交
228 229
      const mkldnn::prop_kind& propagation, const std::vector<int>& stride,
      const std::vector<int>& padding_left_top,
230 231
      const std::vector<int>& padding_right_bot, const std::vector<int>& kernel,
      const std::string& pooling_type, const mkldnn::engine& engine,
232 233 234 235
      bool ceil_mode, bool is_test) const {
    auto mkldnn_forward_prop_kind = is_test
                                        ? mkldnn::prop_kind::forward_inference
                                        : mkldnn::prop_kind::forward_training;
236
    auto pool_desc = mkldnn::pooling_forward::desc(
237
        mkldnn_forward_prop_kind,
238 239
        pooling_type == "max" ? mkldnn::algorithm::pooling_max
                              : mkldnn::algorithm::pooling_avg,
240 241
        src, dst, stride, kernel, padding_left_top, padding_right_bot,
        mkldnn::padding_kind::zero);
242 243 244 245 246 247 248 249 250 251 252 253

    auto p_pool_pd =
        new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
    return std::unique_ptr<mkldnn::pooling_forward::primitive_desc>(p_pool_pd);
  }

  std::unique_ptr<mkldnn::memory> CreateWorkspaceMemory(
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd,
      const std::string& pooling_type, const mkldnn::engine& engine) const {
    mkldnn::memory::primitive_desc workspace_md =
        pooling_type == "max"
            ? pool_pd->workspace_primitive_desc()
254 255 256 257
            : mkldnn::memory::primitive_desc({{},
                                              platform::MKLDNNGetDataType<T>(),
                                              mkldnn::memory::format::nchw},
                                             engine);
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

    auto p_workspace_memory = new mkldnn::memory(workspace_md);
    return std::unique_ptr<mkldnn::memory>(p_workspace_memory);
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

275 276 277 278 279 280 281
    PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN &&
                       in_x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input X tensor");
    PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN &&
                       out_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input output_grad tensor");

282 283 284 285
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();

    const T* out_grad_data = out_grad->data<T>();
    T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
304
    memory::format in_x_grad_format{memory::format::format_undef};
305 306 307 308 309 310

    std::vector<int> diff_src_tz =
        paddle::framework::vectorize2int(in_x_grad->dims());
    std::vector<int> diff_dst_tz =
        paddle::framework::vectorize2int(out_grad->dims());

311 312
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
313 314 315
    const std::string key = CreateKey(ctx, diff_src_tz, pooling_type, ksize,
                                      strides, paddings, memory::data_type::f32,
                                      in_x->format(), ctx.op().Input("Out"));
316 317 318
    const std::string key_pool_bwd_p = key + "@pool_bwd_p";
    const std::string key_pool_diff_src_mem_p = key + "@pool_diff_src_mem_p";
    const std::string key_pool_diff_dst_mem_p = key + "@pool_diff_dst_mem_p";
319 320
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
321 322 323
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
324

325 326 327 328 329 330 331 332 333 334 335 336 337 338
    auto user_diff_dst_memory =
        memory({{{diff_dst_tz}, memory::data_type::f32, out_grad->format()},
                mkldnn_engine},
               to_void_cast<T>(out_grad_data));

    std::shared_ptr<memory> diff_src_memory;
    std::shared_ptr<memory> diff_dst_memory;
    auto dst_memory =
        std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find dst_memory in device context");

    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
339 340 341
    auto pool_bwd_p = std::static_pointer_cast<pooling_backward>(
        dev_ctx.GetBlob(key_pool_bwd_p));
    if (pool_bwd_p == nullptr) {
342 343 344 345 346
      // Retrieve src_memory/dst_memory saved in forward pass
      auto src_memory =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(src_memory != nullptr,
                     "Fail to find src_memory in device context");
347 348 349 350 351 352
      // Retrieve pool_pd/pool_workspace_memory from device context
      auto pool_pd =
          std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
              dev_ctx.GetBlob(key_pool_pd));
      PADDLE_ENFORCE(pool_pd != nullptr,
                     "Fail to find pool_pd in device context");
353
      auto workspace_memory = std::static_pointer_cast<memory>(
354 355 356 357
          dev_ctx.GetBlob(key_pool_workspace_memory));
      PADDLE_ENFORCE(workspace_memory != nullptr,
                     "Fail to find workspace_memory in device context");

358 359 360
      // create memory descriptors for pooling
      auto diff_src_md = src_memory.get()->get_primitive_desc().desc();
      auto diff_dst_md = dst_memory.get()->get_primitive_desc().desc();
361 362 363 364 365 366 367 368 369

      auto pool_bwd_desc = mkldnn::pooling_backward::desc(
          pooling_type == "max" ? mkldnn::algorithm::pooling_max
                                : mkldnn::algorithm::pooling_avg,
          diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
          mkldnn::padding_kind::zero);
      auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc(
          pool_bwd_desc, mkldnn_engine, *pool_pd);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
      // reorder between user_diff_dst and pool diff_dst if needed
      diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      diff_src_memory = std::make_shared<memory>(
          pool_bwd_pd.diff_src_primitive_desc(), in_x_grad_data);

      dev_ctx.SetBlob(key_pool_diff_src_mem_p, diff_src_memory);
      dev_ctx.SetBlob(key_pool_diff_dst_mem_p, diff_dst_memory);

386
      pool_bwd_p = std::make_shared<pooling_backward>(
387
          pool_bwd_pd, *diff_dst_memory, *workspace_memory, *diff_src_memory);
388
      dev_ctx.SetBlob(key_pool_bwd_p, pool_bwd_p);
389

390 391
    } else {
      // Primitives already exist
392
      diff_src_memory = std::static_pointer_cast<memory>(
393
          dev_ctx.GetBlob(key_pool_diff_src_mem_p));
394
      PADDLE_ENFORCE(diff_src_memory != nullptr,
395
                     "Fail to find pooling src mem_p in device context");
396
      diff_dst_memory = std::static_pointer_cast<memory>(
397
          dev_ctx.GetBlob(key_pool_diff_dst_mem_p));
398
      PADDLE_ENFORCE(diff_dst_memory != nullptr,
399
                     "Fail to find pooling dst mem_p in device context");
400 401 402 403 404 405 406 407 408 409 410 411

      diff_src_memory->set_data_handle(reinterpret_cast<void*>(in_x_grad_data));
      diff_dst_memory->set_data_handle(const_cast<T*>(out_grad_data));

      // reorder between user_diff_dst and pool diff_dst if needed
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }
412
    }
413

414 415 416 417
    in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc()
                           .desc()
                           .data.format;

418
    // push primitive to stream and wait until it's executed
419 420 421 422
    std::vector<mkldnn::primitive> pipeline;
    if (is_diff_dst_reordered) {
      pipeline.push_back(reorder_diff_dst);
    }
423
    pipeline.push_back(*pool_bwd_p);
424
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
425 426 427

    in_x_grad->set_layout(DataLayout::kMKLDNN);
    in_x_grad->set_format(in_x_grad_format);
428 429 430 431 432 433
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

434 435
namespace ops = paddle::operators;

436
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
437 438 439 440
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

441
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
442
                   ops::PoolMKLDNNGradOpKernel<float>);