test_nn_grad.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope


class TestMulGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        prog = fluid.Program()
        with fluid.program_guard(prog):
            x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x')
            y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y')
            z = layers.mul(x=x, y=y)
            gradient_checker.grad_check([x, y], z, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
class TestSliceOpDoubleGradCheck(unittest.TestCase):
    def func(self, place):
        self.config()

        out = fluid.layers.slice(
            self.inputs, axes=self.axes, starts=self.starts, ends=self.ends)
        gradient_checker.double_grad_check(
            [self.inputs], out, x_init=self.x_arr, place=place)

    def config(self):
        self.starts = [1, 0, -1]
        self.ends = [3, 3, 6]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 4, 5, 2]).astype("float64")
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 4, 5, 2], name='x')

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.func(place)


class TestSliceOpDoubleGradCheckCase3(TestSliceOpDoubleGradCheck):
    def config(self):
        self.starts = [1, -1, 1]
        self.ends = [3, 3, 3]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 3, 3]).astype("float64")
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 3, 3], name='x3')


L
lvmengsi 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_mean(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_sum(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


126 127 128
class TestMulDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
129
        # the shape of input variable should be clearly specified, not inlcude -1.
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        x_shape = [7, 11]
        y_shape = [11, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        y = layers.data('y', y_shape, False, dtype)
        y.persistable = True
        out = layers.mul(x, y)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
class TestMatmulDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        eps = 0.005
        x_shapes = [[2], [2, 3], [2, 4, 3], [2, 3, 4, 5], [2, 3, 4]]
        y_shapes = [[2], [3, 2], [2, 4, 5], [2, 3, 3, 5], [4, 3]]
        transpose_xs = [False, True, True, False, False]
        transpose_ys = [False, True, False, True, False]
        dtypes = [np.float64, np.float64, np.float32, np.float32, np.float64]
        typenames = ["float64", "float64", "float32", "float32", "float64"]
        for i, (x_shape, y_shape, transpose_x, transpose_y, dtype, typename) \
            in enumerate(zip(x_shapes, y_shapes, transpose_xs, transpose_ys, dtypes, typenames)):
            x = layers.create_parameter(
                dtype=typename, shape=x_shape, name='x{}'.format(i))
            y = layers.create_parameter(
                dtype=typename, shape=y_shape, name='y{}'.format(i))
            out = layers.matmul(
                x, y, transpose_x, transpose_y, name='out{}'.format(i))

            x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
            y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)
            gradient_checker.double_grad_check(
                [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


186
class TestReshapeDoubleGradCheck(unittest.TestCase):
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        expand_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.expand(x, expand_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandDoubleGradCheck(unittest.TestCase):
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        new_shape = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.reshape(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
class TestSqueezeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [1, 3, 1, 40]
        axes = [0, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.squeeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestUnsqueezeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        axes = [1, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.unsqueeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


282 283
if __name__ == "__main__":
    unittest.main()