unsqueeze_op.cc 16.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/unsqueeze_op.h"
#include <memory>
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/op_registry.h"
20 21 22 23

namespace paddle {
namespace operators {

24
class UnsqueezeOp : public framework::OperatorWithKernel {
25
 public:
26 27 28 29
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
30 31 32
                      platform::errors::InvalidArgument(
                          "Input(X) of "
                          "Unsqueeze operator should not be null."));
33
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
34 35 36
                      platform::errors::InvalidArgument(
                          "Output(Out) of "
                          "Unsqueeze operator should not be null."));
37

38 39
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
40
    // Validity Check: input tensor dims (<6).
41
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
42 43 44 45
                      platform::errors::InvalidArgument(
                          "Invalid "
                          "dimensions, the rank of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)"));
46 47 48 49 50 51 52 53 54 55 56 57
    if (!axes.empty()) {
      auto out_dims = GetOutputShape(axes, x_dims);
      ctx->SetOutputDim("Out", out_dims);
      if (x_dims[0] == out_dims[0]) {
        // Only pass LoD when the first dimension of output and Input(X)
        // are the same.
        ctx->ShareLoD("X", "Out");
      }
    } else if (ctx->HasInputs("AxesTensorList")) {
      auto AxesTensorList = ctx->Inputs("AxesTensorList");
      int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
      PADDLE_ENFORCE_LE(output_size, 6,
58 59
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
60 61 62 63
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
    } else if (ctx->HasInput("AxesTensor")) {
      auto axes_dims = ctx->GetInputDim("AxesTensor");
64 65 66 67 68 69 70 71 72 73 74 75 76
      PADDLE_ENFORCE_EQ(axes_dims.size(), 1,
                        platform::errors::InvalidArgument(
                            "Input(AxesTensor)'s dimension of "
                            "Op(unsqueeze) must be 1. "
                            "But received AxesTensor's shape = [%s], "
                            "AxesTensor's dimension = %d.",
                            axes_dims, axes_dims.size()));
      PADDLE_ENFORCE_GE(
          axes_dims[0], 0,
          platform::errors::InvalidArgument(
              "Input(AxesTensor)'s shape must be known. But received "
              "AxesTensor's shape = [%s]",
              axes_dims));
77 78
      int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
      PADDLE_ENFORCE_LE(output_size, 6,
79 80
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
81 82
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
83
    }
84 85
  }

86
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
87
                                        const framework::DDim &in_dims) {
88 89
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
90 91 92
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
93
    PADDLE_ENFORCE_LE(output_size, 6,
94 95
                      platform::errors::InvalidArgument(
                          "The output tensor's rank should be less than 6."));
96 97

    for (int axis : unsqz_dims) {
98
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
99
      // Vaildity Check: the axis bound
100 101 102 103 104 105 106
      PADDLE_ENFORCE_GE(cur, 0, platform::errors::InvalidArgument(
                                    "The insert dimension value should "
                                    "not be less than 0"));
      PADDLE_ENFORCE_LE(cur, cur_output_size,
                        platform::errors::InvalidArgument(
                            "The insert dimension value shoud not be larger "
                            "than the dimension size of input tensor"));
107 108 109 110 111 112 113 114 115
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
116
      // Add the output size.
117
      cur_output_size++;
118 119
    }

120
    // Make output shape
121 122
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
123 124 125 126 127 128
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    return framework::make_ddim(output_shape);
  }
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
146 147 148 149 150 151
};

class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
152 153 154 155 156 157 158 159 160 161 162
    AddInput("AxesTensor",
             "(Tensor<int32>, optional). The dimensions to be inserted. "
             "If it exists, it will replace Attr(axes).")
        .AsDispensable();
    AddInput(
        "AxesTensorList",
        "(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
        "If it exists, it will replace Attr(axes)."
        "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
163 164
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
165
                              "(std::vector<int>). List of integers,"
166
                              " indicating the dimensions to be inserted")
167
        .SetDefault({})
168 169
        .AddCustomChecker([](const std::vector<int> &axes) {
          // Validity Check: axes dims (<6).
170
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
171 172 173 174
                            platform::errors::InvalidArgument(
                                "Invalid "
                                "dimensions, dynamic dimensions should be "
                                "within [1, 6] dimensions (Eigen limit)."));
T
tianshuo78520a 已提交
175
          // Validity Check: the range of unsqueeze axis.
176
          for (int axis : axes) {
177
            PADDLE_ENFORCE_LT(axis, 6,
178 179 180 181
                              platform::errors::InvalidArgument(
                                  "Invalid "
                                  "dimensions, input axis should be"
                                  "within [1, 6] dimensions (Eigen limit)."));
182 183
          }
        });
184
    AddComment(R"DOC(
185 186
    Unsqueeze Operator.

187 188 189 190 191 192
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
193
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
194 195 196 197
    )DOC");
  }
};

198
class UnsqueezeGradOp : public framework::OperatorWithKernel {
199
 public:
200 201 202
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
203
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
204
    ctx->ShareLoD("X", framework::GradVarName("X"));
205
  }
206 207 208 209 210 211 212 213 214 215 216 217 218 219

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class UnsqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

220
  void Apply(GradOpPtr<T> grad_op) const override {
221 222 223 224 225 226
    grad_op->SetType("unsqueeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
227
};
228

229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename T>
class UnsqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("unsqueeze");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

242 243 244 245 246
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
247
class Unsqueeze2Op : public UnsqueezeOp {
248
 public:
249
  using UnsqueezeOp::UnsqueezeOp;
250
  void InferShape(framework::InferShapeContext *ctx) const override {
251
    UnsqueezeOp::InferShape(ctx);
252
    const auto &x_dims = ctx->GetInputDim("X");
253 254 255

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("XShape"), true,
256 257
        platform::errors::InvalidArgument("Output(XShape) of Unsqueeze "
                                          "operator should not be null."));
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
        .AsIntermediate();
  }
};

H
hong 已提交
279 280
template <typename T>
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
281
 public:
H
hong 已提交
282
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
283

284
  void Apply(GradOpPtr<T> grad_op) const override {
285
    grad_op->SetType("unsqueeze2_grad");
H
hong 已提交
286 287 288 289
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
290 291 292
  }
};

293
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
294
 public:
295 296
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *context) const override {
297 298 299
    PADDLE_ENFORCE_EQ(
        context->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
300
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
301 302
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
303 304 305 306 307 308
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

309 310 311
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
312 313 314
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
315 316
  }
};
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331
template <typename T>
class Unsqueeze2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("unsqueeze2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

332 333 334 335
DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
336
DECLARE_NO_NEED_BUFFER_VARS_INFERER(UnsqueezeGradOpNoNeedBufferVarInferer, "X");
337 338 339 340
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
341 342 343 344
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
                  ops::UnsqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
345 346 347
                  ops::UnsqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
                  ops::UnsqueezeGradOpNoNeedBufferVarInferer);
348 349

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
H
hong 已提交
350 351 352
                  ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
                  ops::UnsqueezeInplaceInferer);
353
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
354 355
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::imperative::OpBase>,
356
                  ops::UnsqueezeGradInplaceInferer);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

REGISTER_OP_CPU_KERNEL(
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    unsqueeze_grad,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
372 373 374 375 376
    unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
377 378 379 380 381 382 383
REGISTER_OP_CPU_KERNEL(
    unsqueeze2_grad,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);