grad_tensor_holder.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/grad_tensor_holder.h"

17
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
18
#include "paddle/fluid/framework/convert_utils.h"
19
#include "paddle/fluid/framework/var_type.h"
20
#include "paddle/fluid/imperative/gradient_accumulator.h"
21
#include "paddle/phi/core/sparse_coo_tensor.h"
22
#include "paddle/phi/kernels/funcs/math_function.h"
23 24 25

namespace egr {

26 27 28 29 30
void GradTensorHolder::SetBufferSlotRankZeros(size_t slot_id, size_t rank) {
  buffer_[slot_id][rank] =
      paddle::experimental::zeros_like(buffer_[slot_id][rank]);
}

31 32 33
void GradTensorHolder::CopyValueFromTensor(
    size_t slot_id, size_t rank, const paddle::experimental::Tensor& t,
    bool fill_one) {
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  // TODO(jiabin): We need to deal with empty input_buffer with slot size not
  // empty;
  PADDLE_ENFORCE(slot_id < buffer_.size(),
                 paddle::platform::errors::Fatal(
                     "Invalid slot_id for GradTensorHolder::add() "
                     "which exceeds size of buffer"));
  VLOG(6) << "Add Tensor for buffer_ slot: " << slot_id
          << ", size: " << buffer_[slot_id].size();
  if (buffer_[slot_id].empty()) {
    VLOG(6) << "Pass add Tensor for buffer_ slot: " << slot_id
            << " since its buffer_ is empty ";
    return;
  }
  PADDLE_ENFORCE(
      rank < buffer_[slot_id].size(),
      paddle::platform::errors::Fatal(
          "Invalid rank for GradTensorHolder::add() which exceeds size "
          "of buffer slot %d, got slot size is: %d rank is: %d",
          slot_id, buffer_[slot_id].size(), rank));
  if (!fill_one) {
54 55
    paddle::experimental::Tensor& buffer_tensor = buffer_[slot_id][rank];
    if ((!buffer_tensor.defined() || !buffer_tensor.initialized())) {
56
      // Perform deep copy here
C
Chen Weihang 已提交
57
      buffer_tensor.copy_(t, t.place(), false);
58 59
      buffer_tensor.set_autograd_meta(t.mutable_autograd_meta());

60
    } else {
61 62 63
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Cannot copy grad_tensors' value to grad tensor holders,"
          "input buffer has already been initialized."));
64 65 66 67
    }
  } else {
    // Create new tensor->impl and fill it with 1.0
    if (t.defined()) {
68 69
      // Fill 1.0, use full to support complex, one_like don't support it.
      buffer_[slot_id][rank] =
C
Chen Weihang 已提交
70
          paddle::experimental::full(t.shape(), 1, t.dtype(), t.place());
71 72 73 74
    }
  }
}

75
void GradTensorHolder::add(size_t slot_id, size_t rank,
76 77
                           const paddle::experimental::Tensor& t,
                           bool create_graph) {
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  // TODO(jiabin): We need to deal with empty input_buffer with slot size not
  // empty;
  PADDLE_ENFORCE(slot_id < buffer_.size(),
                 paddle::platform::errors::Fatal(
                     "Invalid slot_id for GradTensorHolder::add() "
                     "which exceeds size of buffer"));
  VLOG(6) << "Add Tensor for buffer_ slot: " << slot_id
          << ", size: " << buffer_[slot_id].size();
  if (buffer_[slot_id].empty()) {
    VLOG(6) << "Pass add Tensor for buffer_ slot: " << slot_id
            << " since its buffer_ is empty ";
    return;
  }
  PADDLE_ENFORCE(
      rank < buffer_[slot_id].size(),
      paddle::platform::errors::Fatal(
          "Invalid rank for GradTensorHolder::add() which exceeds size "
          "of buffer slot %d, got slot size is: %d rank is: %d",
          slot_id, buffer_[slot_id].size(), rank));

  paddle::experimental::Tensor& buffer_tensor = buffer_[slot_id][rank];
  // TODO(jiabin): Code bellow is ugly to divide which inner var we used,
  // remove framework::Variable
  // related code later.
  // This if statement is trying to test neither phi::Tensor nor
  // framework::Variable is initialized.
  if ((!buffer_tensor.defined() || !buffer_tensor.initialized())) {
    // Simply copy tensor->impl
    buffer_tensor = t;
  } else {
    // Accumulation
    PADDLE_ENFORCE_EQ(t.initialized(), true,
                      paddle::platform::errors::Fatal(
                          "We can only accumulate initialized tensor, but we "
                          "got tensor: %s is empty please check you network "
                          "and make sure it creates grads.",
                          t.name()));
115

116 117
    if (t.is_dense_tensor()) {
      if (buffer_tensor.is_dense_tensor()) {
118 119 120 121 122 123
        if (create_graph) {
          buffer_tensor = add_final_state_dygraph_function(t, buffer_tensor);
        } else {
          paddle::imperative::TensorAdd<paddle::experimental::Tensor>(
              t, &buffer_tensor);
        }
124 125 126 127 128 129 130 131 132 133
      } else {
        // TODO(jiabin): Support Other TensorBase later
        // TODO(zhanlve): Replace SelectedRowsAddTensor with
        // add_dygraph_function once it's supported
        paddle::experimental::Tensor new_buffer(
            std::make_shared<phi::DenseTensor>(), "tmp_accumulator");
        paddle::imperative::SelectedRowsAddTensor(buffer_tensor, t,
                                                  &new_buffer);
        buffer_tensor.set_impl(new_buffer.impl());
      }
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    } else if (t.is_sparse_coo_tensor()) {
      auto t_sparse = std::dynamic_pointer_cast<phi::SparseCooTensor>(t.impl());
      paddle::experimental::Tensor t_values(
          std::make_shared<phi::DenseTensor>(t_sparse->non_zero_elements()));
      // In fact, the gradient of SparseTensor is still a SparseTensor
      if (buffer_tensor.is_sparse_coo_tensor()) {
        auto buffer_sparse = std::dynamic_pointer_cast<phi::SparseCooTensor>(
            buffer_tensor.impl());
        paddle::experimental::Tensor buffer_values(
            std::make_shared<phi::DenseTensor>(
                buffer_sparse->non_zero_elements()));
        if (create_graph) {
          buffer_values =
              add_final_state_dygraph_function(t_values, buffer_values);
        } else {
          paddle::imperative::TensorAdd<paddle::experimental::Tensor>(
              t_values, &buffer_values);
        }
      }
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    } else {
      // TODO(jiabin): Support Other TensorBase later
      // TODO(zhanlve): Replace SelectedRowsAddTensor with add_dygraph_function
      // once it's supported
      if (buffer_tensor.is_dense_tensor()) {
        paddle::imperative::SelectedRowsAddToTensor(t, &buffer_tensor);
      } else {
        buffer_tensor =
            std::move(*paddle::imperative::SelectedRowsMerge<
                      paddle::experimental::Tensor>(t, buffer_tensor));
      }
    }
  }
}

168
}  // namespace egr