base.py 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
import contextlib
16
import sys
17 18 19
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
M
minqiyang 已提交
20
from .tracer import Tracer
Z
Zeng Jinle 已提交
21
import logging
J
Jiabin Yang 已提交
22
import objgraph
23

24 25
__all__ = [
    'no_grad',
Z
Zeng Jinle 已提交
26
    'grad',
27
    'guard',
28 29 30
    'enable_dygraph',
    'disable_dygraph',
    'enabled',
31 32
    'to_variable',
]
33 34


35 36 37 38 39 40 41 42 43 44 45
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


46 47 48 49 50 51 52 53 54 55 56
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
    yield
    if tracer:
        tracer._enable_program_desc_tracing = original_val


57 58 59
_functional_dygraph_context_manager = None


60
def enabled():
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .

    **Note**:
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use.

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
L
lujun 已提交
84
    return framework.in_dygraph_mode()
85 86


87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
def enable_dygraph(place=None):
    """
    This function enables dynamic graph mode.

    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph.
            If None, the running place will be determined according to the way of paddle compilation. Default: None

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
109 110 111
    if _functional_dygraph_context_manager is None:
        _functional_dygraph_context_manager = guard(place=place)
        _functional_dygraph_context_manager.__enter__()
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136


def disable_dygraph():
    """
    This function disables dynamic graph mode.

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


137 138 139 140 141 142 143 144 145 146 147 148 149
@contextlib.contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
        mode = tracer._train_mode
        tracer._train_mode = is_train
        yield
        tracer._train_mode = mode
    else:
        yield


def _no_grad_(func):
150 151 152
    """
    This Decorator will avoid the func being decorated creating backward network in dygraph mode

153 154
    Parameter:
        - **func** (python func): the func don't need grad
155 156 157 158 159 160 161 162 163 164 165

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
166
                inp = np.ones([3, 1024], dtype='float32')
167
                t = fluid.dygraph.base.to_variable(inp)
168 169 170 171
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)
172 173 174 175 176

        test_layer()

    """

177 178 179 180 181 182 183 184
    def __impl__(*args, **kwargs):
        with _switch_tracer_mode_guard_(is_train=False):
            return func(*args, **kwargs)

    return __impl__


no_grad = wrap_decorator(_no_grad_)
L
lujun 已提交
185 186
# for fluidDoc
no_grad.__doc__ = _no_grad_.__doc__
187 188


S
rename  
sneaxiy 已提交
189
@signature_safe_contextmanager
P
Paddle CI 已提交
190
def guard(place=None):
191
    """
192
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
193

194 195 196
    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation. Default: None
197 198 199 200 201 202 203 204 205 206 207 208

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
209
            inp = np.ones([3, 1024], dtype='float32')
210
            t = fluid.dygraph.base.to_variable(inp)
211 212 213 214
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
215 216

    """
217 218
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
219
    tracer = Tracer()
220
    VarBase = core.VarBase
M
minqiyang 已提交
221

P
Paddle CI 已提交
222
    if place is None:
M
minqiyang 已提交
223
        if core.is_compiled_with_cuda():
P
Paddle CI 已提交
224
            place = core.CUDAPlace(0)
M
minqiyang 已提交
225 226
        else:
            place = core.CPUPlace()
227
    tracer._expected_place = place
M
minqiyang 已提交
228

229 230
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
231 232
            with framework._dygraph_guard(tracer):
                with framework._dygraph_place_guard(place):
P
Paddle CI 已提交
233
                    yield
234 235


236
def _print_debug_msg(parameter_list, limit=5, is_test=False):
Z
Zeng Jinle 已提交
237 238 239 240 241 242
    if not core._is_dygraph_debug_enabled():
        logging.warn(
            'Debug mode is not enabled. Please set FLAGS_dygraph_debug=1 to enable debug'
        )
        return
    unique_name_size = len(framework.unique_name.generator.ids)
243
    tracer_var_size = len(parameter_list)
Z
Zeng Jinle 已提交
244
    alive_cpp_var_size = len(core.VarBase._alive_vars())
J
Jiabin Yang 已提交
245 246 247 248 249 250 251
    if not is_test:
        logging.warn(
            'unique_name num: {}, tracer vars num: {}, alive cpp vars num: {}'
            .format(unique_name_size, tracer_var_size, alive_cpp_var_size))
        objgraph.show_growth(limit=limit)
    else:
        return unique_name_size, tracer_var_size, alive_cpp_var_size
Z
Zeng Jinle 已提交
252 253


254 255 256 257
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
Z
Zeng Jinle 已提交
258
         retain_graph=None,
259
         create_graph=False,
Z
Zeng Jinle 已提交
260 261 262
         only_inputs=True,
         allow_unused=False,
         no_grad_vars=None,
263
         backward_strategy=None):
Z
Zeng Jinle 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    ''' 
    .. note::
        **This API is ONLY available in Dygraph mode.**

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
        outputs (Variable|list(Variable)|tuple(Variable)): the output Variable or 
            Variable list/tuple of the graph to compute gradients.
        inputs (Variable|list(Variable)|tuple(Variable)): the input Variable or 
            Variable list/tuple of the graph to compute gradients. The returned
            values of this API are the gradients of `inputs` . 
        grad_outputs (Variable|list(Variable|None)|tuple(Variable|None), optional): 
            initial gradient values of `outputs` . If `grad_outputs` is None, 
            the initial gradient values of `outputs` would be Tensors filled with 1; 
            if `grad_outputs` is not None, it must have the same length as `outputs` , 
            and in this case, the initial gradient value of the i-th `outputs` would
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs` 
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
            `grad_outputs` is a Variable. Default None.
        retain_graph (bool, optional): whether to retain the forward graph which 
            is used to calculate the gradient. When it is True, the graph would 
            be retained, in which way users can calculate backward twice for the 
            same graph. When it is False, the graph would be freed. Default None,
            which means it is equal to `create_graph` . 
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
            `inputs` . If it is False, the gradients of all remaining leaf 
            Variables in the graph would be also computed and accumulated. 
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
            not supported yet.    
        allow_unused (bool, optional): whether to raise error or return None if some 
            Variables of `inputs` are unreachable in the graph. If some Variables of 
            `inputs` are unreachable in the graph (i.e., their gradients are None),  
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
        no_grad_vars (Variable|list(Variable)|tuple(Variable)|set(Variable), optional): 
            the Variables whose gradients are not needed to compute. Default None.
        backward_strategy (BackwardStrategy, optional): The backward strategy to
            compute gradients. See :ref:`api_fluid_dygraph_BackwardStrategy` for
            details. Default None.

    Returns:
        tuple: a tuple of Variables, whose length is the same as the Variable number 
        inside `inputs`, and the i-th returned Variable is the sum of gradients of 
        `outputs` with respect to the i-th `inputs`.

    Examples 1:
        .. code-block:: python

            import paddle.fluid as fluid

            def test_dygraph_grad(create_graph):
                with fluid.dygraph.guard(): 
                    x = fluid.layers.ones(shape=[1], dtype='float32') 
                    x.stop_gradient = False
                    y = x * x

                    # Since y = x * x, dx = 2 * x 
                    dx = fluid.dygraph.grad(
                            outputs=[y],
                            inputs=[x], 
                            create_graph=create_graph, 
                            retain_graph=True)[0]

                    z = y + dx

                    # If create_graph = False, the gradient of dx
                    # would not be backpropagated. Therefore,
                    # z = x * x + dx, and x.gradient() = 2 * x = 2.0
                    
                    # If create_graph = True, the gradient of dx
                    # would be backpropagated. Therefore, 
                    # z = x * x + dx = x * x + 2 * x, and
                    # x.gradient() = 2 * x + 2 = 4.0 

                    z.backward()
                    return x.gradient() 

            print(test_dygraph_grad(create_graph=False)) # [2.] 
            print(test_dygraph_grad(create_graph=True)) # [4.]

    Examples 2:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()

            def test_dygraph_grad(grad_outputs=None):
                x = fluid.layers.fill_constant(shape=[1], value=2.0, dtype='float32')
                x.stop_gradient = False

                y1 = x * x
                y2 = x * 3 

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

                dx = fluid.dygraph.grad(
                    outputs=[y1, y2], 
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

            THREE = fluid.layers.fill_constant(shape=[1], value=3.0, dtype='float32')
            FOUR = fluid.layers.fill_constant(shape=[1], value=4.0, dtype='float32')

            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
            print(test_dygraph_grad([None, FOUR])) # [16.] 

            # dy1 = [4], dy2 = [1]
            print(test_dygraph_grad([FOUR, None])) # [19.]

            # dy1 = [3], dy2 = [4]
            print(test_dygraph_grad([THREE, FOUR])) # [24.]
	'''

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
                assert isinstance(
                    each_var,
                    core.VarBase), "Elements of {} must be Variable".format(
                        name)
            return in_out_list
        else:
            assert isinstance(
                in_out_list,
                core.VarBase), "{} must be Variable or list of Variable".format(
                    name)
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
                assert isinstance(
                    each_var, core.VarBase
                ), "grad_outputs must be None, a Variable or a list containing None or Variables"
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

Z
Zeng Jinle 已提交
434 435 436 437 438 439 440
    if no_grad_vars is None:
        no_grad_vars = []
    elif isinstance(no_grad_vars, core.VarBase):
        no_grad_vars = [no_grad_vars]
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
441
            assert isinstance(
Z
Zeng Jinle 已提交
442
                var, core.VarBase), "no_grad_vars can only contains Variable"
443 444
    else:
        raise AssertionError(
Z
Zeng Jinle 已提交
445
            "no_grad_vars must be None, Variable or list/tuple/set of Variables")
446 447 448 449 450 451 452 453 454

    if backward_strategy is None:
        backward_strategy = core.BackwardStrategy()

    assert isinstance(backward_strategy, core.BackwardStrategy), \
        "backward_strategy must be type paddle.fluid.dygraph.BackwardStrategy"

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
455 456 457 458 459 460 461 462 463 464 465
    if retain_graph is None:
        retain_graph = create_graph

    assert isinstance(retain_graph,
                      bool), "retain_graph must be None, True or False"

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

466 467
    place = core.Place()
    place.set_place(framework._current_expected_place())
Z
Zeng Jinle 已提交
468 469 470
    return core.dygraph_partial_grad(
        inputs, outputs, grad_outputs, no_grad_vars, place, backward_strategy,
        create_graph, retain_graph, allow_unused, only_inputs)
471 472


473
@framework.dygraph_only
474
def to_variable(value, name=None, zero_copy=None):
475
    """
476
    The API will create a ``Variable`` object from numpy\.ndarray or Variable object.
477

478
    Parameters:
479
        value(ndarray|Variable): The numpy\.ndarray or Variable object that needs to be converted, it can be multi-dimension, and the data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16}.
480
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
481
        zero_copy(bool, optional): Whether to share memory with the input numpy array. This parameter only works with CPUPlace and will be set to True when it is None. Default: None.
482

483
    Returns:
484 485
        Variable: If ``value`` is a numpy\.ndarray object, return ``Tensor`` created from the specified numpy\.ndarray object, which has same data type and shape with ``value``. If ``value`` is a Variable object, just return ``value``.

486 487 488 489 490 491 492 493

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

494
        with fluid.dygraph.guard(fluid.CPUPlace()):
495
            x = np.ones([2, 2], np.float32)
496 497 498
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
499
            y = fluid.dygraph.to_variable(x)
500 501
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
502 503

    """
504
    if isinstance(value, np.ndarray):
L
lujun 已提交
505 506
        assert framework.in_dygraph_mode(
        ), "to_variable could only be called in dygraph mode"
507 508 509 510 511 512
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
            if zero_copy is None:
                zero_copy = True
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
513 514 515 516
            zero_copy = False
        py_var = core.VarBase(
            value=value,
            place=framework._current_expected_place(),
L
Leo Chen 已提交
517 518 519
            persistable=False,
            zero_copy=zero_copy,
            name=name if name else '')
520
        return py_var
521
    elif isinstance(value, (core.VarBase, framework.Variable)):
522
        return value
523 524 525
    else:
        raise TypeError(
            "to_variable only accepts 'ndarray' and 'Variable' as value's input")