initializer.py 12.6 KB
Newer Older
1
import framework
2
import numpy as np
3

4 5 6 7 8 9
__all__ = [
    'Constant',
    'Uniform',
    'Normal',
    'Xavier',
]
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

    def __init_(self):
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

class ConstantInitializer(Initializer):
    """Implements the constant initializer
    """

    def __init__(self, value=0.0):
        """Constructor for ConstantInitializer

        Args:
            value: constant value to initialize the variable
        """
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        op = block.prepend_op(
            type="fill_constant",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
F
fengjiayi 已提交
98
                "dtype": int(var.dtype),
99 100 101 102 103 104 105
                "value": self._value
            })
        var.op = op
        return op


class UniformInitializer(Initializer):
106
    """Implements the random uniform distribution initializer
107 108 109 110 111 112 113 114 115 116 117 118
    """

    def __init__(self, low=-1.0, high=1.0, seed=0):
        """Constructor for UniformInitializer

        Args:
            low: lower boundary of the uniform distribution
            high: upper boundary of the uniform distribution
            seed: random seed
        """
        assert low is not None
        assert high is not None
119
        assert high >= low
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        assert seed is not None
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
140 141
        if self._seed == 0:
            self._seed = block.program.random_seed
142 143 144 145 146
        op = block.prepend_op(
            type="uniform_random",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
F
fengjiayi 已提交
147
                "dtype": int(var.dtype),
148 149 150 151 152 153
                "min": self._low,
                "max": self._high,
                "seed": self._seed
            })
        var.op = op
        return op
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189


class NormalInitializer(Initializer):
    """Implements the  random Normal(Gaussian) distribution initializer
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        """Constructor for NormalInitializer

        Args:
            loc: mean of the normal distribution
            scale: standard deviation of the normal distribution
            seed: random seed
        """
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
190 191
        if self._seed == 0:
            self._seed = block.program.random_seed
192 193 194 195 196
        op = block.prepend_op(
            type="gaussian_random",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
F
fengjiayi 已提交
197
                "dtype": int(var.dtype),
198 199 200 201 202 203
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
            })
        var.op = op
        return op
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266


class XavierInitializer(Initializer):
    """Implements the Xavier initializer

    This class implements the Xavier weight initializer from the paper
    Understanding the difficulty of training deep feedforward neural
    networks[1] by Xavier Glorot and Yoshua Bengio.

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
    the range is [-x, x], where x = sqrt(6 / (fan_in + fan_out)).
    In case of Normal distribution, the mean is 0 and the standard deviation
    is sqrt(2/ (fan_in + fan_out)).

    References:
        [1] Understanding the difficulty of training deep feedforward neural
            networks. International conference on artificial intelligence and
            statistics.
            (http://proceedings.mlr.press/v9/glorot10a.html)
    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
        """Constructor for XavierInitializer

        Args:
            uniform: whether to use uniform or normal distribution
            fan_in: fan_in for Xavier initialization. If None, it is
                    inferred from the variable.
            fan_out: fan_out for Xavier initialization. If None, it is
                     inferred from the variable.
            seed: random seed

        Note: It is recommended to set fan_in and fan_out to None for
              most cases.
        """
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
267 268 269
        if self._seed == 0:
            self._seed = block.program.random_seed

270 271 272 273 274 275 276
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
            op = block.prepend_op(
                type="uniform_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
277
                    "dtype": int(var.dtype),
278 279 280 281 282 283 284 285 286 287 288 289
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
                })

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
            op = block.prepend_op(
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
290
                    "dtype": int(var.dtype),
291 292 293 294 295 296
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
                })
        var.op = op
        return op
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
    Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification[1] by Kaiming He, Xiangyu Zhang, Shaoqing Ren
    and Jian Sun. This is a robust initialization method that particularly
    considers the rectifier nonlinearities. In case of Uniform distribution,
    the range is [-x, x], where x = sqrt(6 / fan_in). In case of Normal
    distribution, the mean is 0 and the standard deviation
    is sqrt(2/ fan_in).

    References:
        [1] Delving Deep into Rectifiers: Surpassing Human-Level Performance
            on ImageNet Classification
            (https://arxiv.org/abs/1502.01852)
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer

        Args:
            uniform: whether to use uniform or normal distribution
            fan_in: fan_in for MSRAInitializer. If None, it is
                    inferred from the variable.
            seed: random seed

        Note: It is recommended to set fan_in to None for most cases.
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
353 354 355
        if self._seed == 0:
            self._seed = block.program.random_seed

356 357 358 359 360 361 362
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
            op = block.prepend_op(
                type="uniform_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
363
                    "dtype": int(var.dtype),
364 365 366 367 368 369 370 371 372 373 374 375
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
                })

        else:
            std = np.sqrt(2.0 / float(fan_in))
            op = block.prepend_op(
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
376
                    "dtype": int(var.dtype),
377 378 379 380 381 382
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
                })
        var.op = op
        return op
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398


# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
Xavier = XavierInitializer
MSRA = MSRAInitializer