test_sparse_utils_op.py 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
import paddle
19
import paddle.fluid.core as core
20 21
from paddle.fluid.framework import _test_eager_guard

22 23
devices = ['cpu', 'gpu']

24

25 26
class TestSparseCreate(unittest.TestCase):
    def test_create_coo_by_tensor(self):
27
        with _test_eager_guard():
28 29
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1, 2, 3, 4, 5]
30
            dense_shape = [3, 4]
31 32
            dense_indices = paddle.to_tensor(indices)
            dense_elements = paddle.to_tensor(values, dtype='float32')
33 34
            coo = paddle.sparse.sparse_coo_tensor(
                dense_indices, dense_elements, dense_shape, stop_gradient=False)
35 36
            # test the to_string.py
            print(coo)
37 38
            assert np.array_equal(indices, coo.indices().numpy())
            assert np.array_equal(values, coo.values().numpy())
39

40 41 42 43
    def test_create_coo_by_np(self):
        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
44
            dense_shape = [3, 3]
45
            coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
46 47
            assert np.array_equal(indices, coo.indices().numpy())
            assert np.array_equal(values, coo.values().numpy())
48

49
    def test_create_csr_by_tensor(self):
50
        with _test_eager_guard():
51 52 53
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
54
            dense_shape = [3, 4]
55 56 57
            dense_crows = paddle.to_tensor(crows)
            dense_cols = paddle.to_tensor(cols)
            dense_elements = paddle.to_tensor(values, dtype='float32')
58
            stop_gradient = False
59 60 61 62 63 64
            csr = paddle.sparse.sparse_csr_tensor(
                dense_crows,
                dense_cols,
                dense_elements,
                dense_shape,
                stop_gradient=stop_gradient)
65

66 67 68 69 70 71 72 73
    def test_create_csr_by_np(self):
        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
            csr = paddle.sparse.sparse_csr_tensor(crows, cols, values,
                                                  dense_shape)
74 75
            # test the to_string.py
            print(csr)
76 77 78
            assert np.array_equal(crows, csr.crows().numpy())
            assert np.array_equal(cols, csr.cols().numpy())
            assert np.array_equal(values, csr.values().numpy())
79 80 81 82 83 84 85 86 87 88

    def test_place(self):
        with _test_eager_guard():
            place = core.CPUPlace()
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            dense_shape = [2, 2]
            coo = paddle.sparse.sparse_coo_tensor(
                indices, values, dense_shape, place=place)
            assert coo.place.is_cpu_place()
89 90
            assert coo.values().place.is_cpu_place()
            assert coo.indices().place.is_cpu_place()
91 92 93 94 95 96 97

            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
            csr = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, [3, 5], place=place)
            assert csr.place.is_cpu_place()
98 99 100
            assert csr.crows().place.is_cpu_place()
            assert csr.cols().place.is_cpu_place()
            assert csr.values().place.is_cpu_place()
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    def test_dtype(self):
        with _test_eager_guard():
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            dense_shape = [2, 2]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            coo = paddle.sparse.sparse_coo_tensor(
                indices, values, dense_shape, dtype='float64')
            assert coo.dtype == paddle.float64

            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
            csr = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, [3, 5], dtype='float16')
            assert csr.dtype == paddle.float16

    def test_create_coo_no_shape(self):
        with _test_eager_guard():
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            coo = paddle.sparse.sparse_coo_tensor(indices, values)
            assert [2, 2] == coo.shape


class TestSparseConvert(unittest.TestCase):
131 132 133
    def test_to_sparse_coo(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
134 135 136
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
            dense_x = paddle.to_tensor(x, dtype='float32', stop_gradient=False)
137
            out = dense_x.to_sparse_coo(2)
138 139 140 141 142
            assert np.array_equal(out.indices().numpy(), indices)
            assert np.array_equal(out.values().numpy(), values)
            #test to_sparse_coo_grad backward
            out_grad_indices = [[0, 1], [0, 1]]
            out_grad_values = [2.0, 3.0]
143
            out_grad = paddle.sparse.sparse_coo_tensor(
144
                paddle.to_tensor(out_grad_indices),
145 146 147
                paddle.to_tensor(out_grad_values),
                shape=out.shape,
                stop_gradient=True)
148 149 150 151 152 153 154 155
            out.backward(out_grad)
            assert np.array_equal(dense_x.grad.numpy(),
                                  out_grad.to_dense().numpy())

    def test_coo_to_dense(self):
        with _test_eager_guard():
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
156
            sparse_x = paddle.sparse.sparse_coo_tensor(
157
                paddle.to_tensor(indices),
158 159 160
                paddle.to_tensor(values),
                shape=[3, 4],
                stop_gradient=False)
161 162 163 164 165 166 167 168 169
            dense_tensor = sparse_x.to_dense()
            #test to_dense_grad backward
            out_grad = [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
                        [9.0, 10.0, 11.0, 12.0]]
            dense_tensor.backward(paddle.to_tensor(out_grad))
            #mask the out_grad by sparse_x.indices() 
            correct_x_grad = [2.0, 4.0, 7.0, 9.0, 10.0]
            assert np.array_equal(correct_x_grad,
                                  sparse_x.grad.values().numpy())
170

171 172 173 174 175 176 177 178 179 180 181
            paddle.device.set_device("cpu")
            sparse_x_cpu = paddle.sparse.sparse_coo_tensor(
                paddle.to_tensor(indices),
                paddle.to_tensor(values),
                shape=[3, 4],
                stop_gradient=False)
            dense_tensor_cpu = sparse_x_cpu.to_dense()
            dense_tensor_cpu.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(correct_x_grad,
                                  sparse_x_cpu.grad.values().numpy())

182 183 184
    def test_to_sparse_csr(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
185 186 187
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
188
            dense_x = paddle.to_tensor(x)
189
            out = dense_x.to_sparse_csr()
190 191 192
            assert np.array_equal(out.crows().numpy(), crows)
            assert np.array_equal(out.cols().numpy(), cols)
            assert np.array_equal(out.values().numpy(), values)
193

194
            dense_tensor = out.to_dense()
195 196
            assert np.array_equal(dense_tensor.numpy(), x)

197 198 199 200
    def test_coo_values_grad(self):
        with _test_eager_guard():
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
201
            sparse_x = paddle.sparse.sparse_coo_tensor(
202
                paddle.to_tensor(indices),
203 204 205
                paddle.to_tensor(values),
                shape=[3, 4],
                stop_gradient=False)
206 207 208 209 210
            values_tensor = sparse_x.values()
            out_grad = [2.0, 3.0, 5.0, 8.0, 9.0]
            # test coo_values_grad
            values_tensor.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
211 212 213 214 215 216 217 218 219 220 221 222 223 224
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0],
                      [5.0, 5.0]]
            sparse_x = paddle.sparse.sparse_coo_tensor(
                paddle.to_tensor(indices),
                paddle.to_tensor(values),
                shape=[3, 4, 2],
                stop_gradient=False)
            values_tensor = sparse_x.values()
            out_grad = [[2.0, 2.0], [3.0, 3.0], [5.0, 5.0], [8.0, 8.0],
                        [9.0, 9.0]]
            # test coo_values_grad
            values_tensor.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
225

226 227
    def test_sparse_coo_tensor_grad(self):
        with _test_eager_guard():
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
            for device in devices:
                if device == 'cpu' or (device == 'gpu' and
                                       paddle.is_compiled_with_cuda()):
                    paddle.device.set_device(device)
                    indices = [[0, 1], [0, 1]]
                    values = [1, 2]
                    indices = paddle.to_tensor(indices, dtype='int32')
                    values = paddle.to_tensor(
                        values, dtype='float32', stop_gradient=False)
                    sparse_x = paddle.sparse.sparse_coo_tensor(
                        indices, values, shape=[2, 2], stop_gradient=False)
                    grad_indices = [[0, 1], [1, 1]]
                    grad_values = [2, 3]
                    grad_indices = paddle.to_tensor(grad_indices, dtype='int32')
                    grad_values = paddle.to_tensor(grad_values, dtype='float32')
                    sparse_out_grad = paddle.sparse.sparse_coo_tensor(
                        grad_indices, grad_values, shape=[2, 2])
                    sparse_x.backward(sparse_out_grad)
                    correct_values_grad = [0, 3]
                    assert np.array_equal(correct_values_grad,
                                          values.grad.numpy())
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
                    # test the non-zero values is a vector
                    values = [[1, 1], [2, 2]]
                    values = paddle.to_tensor(
                        values, dtype='float32', stop_gradient=False)
                    sparse_x = paddle.sparse.sparse_coo_tensor(
                        indices, values, shape=[2, 2, 2], stop_gradient=False)
                    grad_values = [[2, 2], [3, 3]]
                    grad_values = paddle.to_tensor(grad_values, dtype='float32')
                    sparse_out_grad = paddle.sparse.sparse_coo_tensor(
                        grad_indices, grad_values, shape=[2, 2, 2])
                    sparse_x.backward(sparse_out_grad)
                    correct_values_grad = [[0, 0], [3, 3]]
                    assert np.array_equal(correct_values_grad,
                                          values.grad.numpy())

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    def test_sparse_coo_tensor_sorted(self):
        with _test_eager_guard():
            for device in devices:
                if device == 'cpu' or (device == 'gpu' and
                                       paddle.is_compiled_with_cuda()):
                    paddle.device.set_device(device)
                    #test unsorted and duplicate indices 
                    indices = [[1, 0, 0], [0, 1, 1]]
                    values = [1.0, 2.0, 3.0]
                    indices = paddle.to_tensor(indices, dtype='int32')
                    values = paddle.to_tensor(values, dtype='float32')
                    sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
                    indices_sorted = [[0, 1], [1, 0]]
                    values_sorted = [5.0, 1.0]
                    assert np.array_equal(indices_sorted,
                                          sparse_x.indices().numpy())
                    assert np.array_equal(values_sorted,
                                          sparse_x.values().numpy())

284 285 286 287 288 289 290 291 292 293
                    # test the non-zero values is a vector
                    values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]
                    values = paddle.to_tensor(values, dtype='float32')
                    sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
                    values_sorted = [[5.0, 5.0], [1.0, 1.0]]
                    assert np.array_equal(indices_sorted,
                                          sparse_x.indices().numpy())
                    assert np.array_equal(values_sorted,
                                          sparse_x.values().numpy())

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

class TestCooError(unittest.TestCase):
    def test_small_shape(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                indices = [[2, 3], [0, 2]]
                values = [1, 2]
                # 1. the shape too small
                dense_shape = [2, 2]
                sparse_x = paddle.sparse.sparse_coo_tensor(
                    indices, values, shape=dense_shape)

    def test_same_nnz(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                # 2. test the nnz of indices must same as nnz of values
                indices = [[1, 2], [1, 0]]
                values = [1, 2, 3]
                sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)

    def test_same_dimensions(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                indices = [[1, 2], [1, 0]]
                values = [1, 2, 3]
                shape = [2, 3, 4]
                sparse_x = paddle.sparse.sparse_coo_tensor(
                    indices, values, shape=shape)

    def test_indices_dtype(self):
        with _test_eager_guard():
            with self.assertRaises(TypeError):
                indices = [[1.0, 2.0], [0, 1]]
                values = [1, 2]
                sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)


class TestCsrError(unittest.TestCase):
    def test_dimension1(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3]
                sparse_x = paddle.sparse.sparse_csr_tensor(crows, cols, values,
                                                           shape)

    def test_dimension2(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3, 3, 3, 3]
                sparse_x = paddle.sparse.sparse_csr_tensor(crows, cols, values,
                                                           shape)

    def test_same_shape1(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2, 3]
                values = [1, 2, 3]
                shape = [3, 4]
                sparse_x = paddle.sparse.sparse_csr_tensor(crows, cols, values,
                                                           shape)
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    def test_same_shape2(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2, 3]
                values = [1, 2, 3, 4]
                shape = [3, 4]
                sparse_x = paddle.sparse.sparse_csr_tensor(crows, cols, values,
                                                           shape)

    def test_same_shape3(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3, 0, 1, 2]
                cols = [0, 1, 2, 3, 0, 1, 2]
                values = [1, 2, 3, 4, 0, 1, 2]
                shape = [2, 3, 4]
                sparse_x = paddle.sparse.sparse_csr_tensor(crows, cols, values,
                                                           shape)

    def test_crows_first_value(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [1, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3, 4]
                sparse_x = paddle.sparse.sparse_csr_tensor(crows, cols, values,
                                                           shape)

    def test_dtype(self):
        with _test_eager_guard():
            with self.assertRaises(TypeError):
                crows = [0, 1, 2, 3.0]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3]
                sparse_x = paddle.sparse.sparse_csr_tensor(crows, cols, values,
                                                           shape)
401

402 403 404

if __name__ == "__main__":
    unittest.main()