auto_parallel_gradient_merge.py 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from collections import OrderedDict
from typing import List, Tuple, Dict, Any

import paddle
from paddle.framework import core
from paddle.fluid.framework import program_guard, device_guard
from paddle.fluid import unique_name, layers
from paddle.fluid.clip import append_gradient_clip_ops
from .pass_base import PassBase, PassType, register_pass


def _is_the_backward_op(op):
    OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
    OpRole = core.op_proto_and_checker_maker.OpRole
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Backward)


def _is_the_optimizer_op(op):
    OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
    OpRole = core.op_proto_and_checker_maker.OpRole
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Optimize)


def _remove_and_get_optimizer_op(main_program, dist_context):
    # 1 create tmp block
    # 2 mv optimizer op from global program to tmp block
    # 3 del the op from dist_context
    from paddle.distributed.fleet.meta_optimizers.common import OpRole
    main_block = main_program.global_block()
    temp_block = main_program._create_block()
    removed_op_idx = []
    optimize_ops_desc = []
    for idx, op in enumerate(main_block.ops):
        if _is_the_optimizer_op(op):
            # append optimizer op to tmp block
            new_op_desc = temp_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            optimize_ops_desc.append(new_op_desc)
            removed_op_idx.append(idx)

            # del op from dist_context
            if dist_context:
                dist_context.del_dist_op_for_program(op)

    for idx in removed_op_idx[::-1]:
        main_block._remove_op(idx)

    return optimize_ops_desc


def _remove_op_role_var(param, grad):
    op_maker = core.op_proto_and_checker_maker
    op = grad.op
    assert _is_the_backward_op(op), \
        'grad.op={} is not the backward op which produces the grad={}' \
        .format(op, grad.name)

    if op.has_attr(op_maker.kOpRoleVarAttrName()):
        op._remove_attr(op_maker.kOpRoleVarAttrName())


def _get_gm_cond_var(main_program, k_steps):
    main_block = main_program.global_block()
    # Add const var
    k_step_var = layers.create_global_var(
        name="gradient_merge_k",
        shape=[1],
        value=int(k_steps),
        dtype='int32',
        persistable=True,
        force_cpu=True)

    zero_var = layers.create_global_var(
        name="gradient_merge_zero",
        shape=[1],
        value=int(0),
        dtype='int32',
        persistable=True,
        force_cpu=True)

    # Add step var & cond var
    step_var = layers.create_global_var(
        name="gradient_merge_step",
        shape=[1],
        value=int(0),
        dtype='int32',
        persistable=True,
        force_cpu=True)

    cond_var = layers.create_global_var(
        name="gradient_merge_cond",
        shape=[1],
        value=bool(0),
        dtype='bool',
        persistable=False,
        force_cpu=True)

    with device_guard("cpu"):
        # step_var = (step_var + 1) % k_step
        layers.increment(x=step_var, value=1.0, in_place=True)
        main_block.append_op(
            type='elementwise_mod',
            inputs={'X': step_var,
                    'Y': k_step_var},
            outputs={'Out': step_var},
            attrs={'axis': -1,
                   'use_mkldnn': False})

        # cond_var = (step_var == 0)
        main_block.append_op(
            type='equal',
            inputs={'X': step_var,
                    'Y': zero_var},
            outputs={'Out': cond_var})

    return cond_var


def _append_gradient_merge_backward_op(
        main_program,
        startup_program,
        params_grads: List[Tuple[Any, Any]],
        cond_var_name: str) -> Tuple[List[Tuple[Any, Any]], Dict[str, Any]]:
    main_block = main_program.global_block()
    startup_block = startup_program.global_block()

    # step1: remove grad.op's op_role_var
    for param, grad in params_grads:
        assert (
            param.type != core.VarDesc.VarType.SELECTED_ROWS
        ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

        _remove_op_role_var(param, grad)

    param_to_gradient_merge = {}
    new_params_to_grads = []
    # step2: create gradient_merge var and init with 0
    for param, grad in params_grads:
        param_name = param.name
        param_var = main_block.var(param_name)
        assert (param_var is not None)
        gradient_merge_var = main_block.create_var(
            name=param_name + "@GRAD@GradientMerge",
            shape=param_var.shape,
            dtype=param_var.dtype,
            persistable=True)
        param_to_gradient_merge[param_name] = gradient_merge_var

        startup_gradient_merge_var = startup_block.create_var(
            name=param_name + "@GRAD@GradientMerge",
            shape=param_var.shape,
            dtype=param_var.dtype,
            persistable=True)
        startup_block.append_op(
            type="fill_constant",
            outputs={"Out": startup_gradient_merge_var},
            attrs={
                "shape": param_var.shape,
                "dtype": param_var.dtype,
                "value": float(0),
            })

        # grad_merge += grad
        new_grad_op = main_block.append_op(
            type="elementwise_add",
            inputs={'X': grad,
                    'Y': gradient_merge_var},
            outputs={'Out': gradient_merge_var},
            attrs={'axis': -1,
                   'use_mkldnn': False})
        new_params_to_grads.append([param, gradient_merge_var])
    return new_params_to_grads, param_to_gradient_merge


def _create_cond_block_and_update_optimizer(
        main_program,
        cond_var,
        new_params_to_grads: List[Tuple[Any, Any]],
        param_to_gradient_merge: Dict[str, Any],
        optimize_ops_desc: List[Any],
        k_steps,
        avg):
    def true_apply_gradient():
        cur_block_idx = main_program.current_block_idx
        cur_block = main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)
        op_maker = core.op_proto_and_checker_maker
        if avg:
            for param, new_grad in new_params_to_grads:
                # grad /= k_steps
                cur_block.append_op(
                    type='scale',
                    inputs={'X': new_grad},
                    outputs={'Out': new_grad},
                    attrs={
                        'scale': 1.0 / k_steps,
                        'bias': 0.0,
                        'bias_after_scale': False
                    })
                new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
                                      op_maker.OpRole.Optimize)

        # append optimizer ops
        for op_desc in optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            #update input/output
            for input_name in new_op_desc.input_arg_names():
                if input_name in new_params_to_grads:
                    new_op_desc._rename_input(input_name,
                                              new_params_to_grads[input_name])

            for output_name in new_op_desc.output_arg_names():
                if output_name in new_params_to_grads:
                    new_op_desc._rename_output(output_name,
                                               new_params_to_grads[output_name])

            # remove op_role_var
            if new_op_desc.has_attr(op_maker.kOpRoleVarAttrName()):
                new_op_desc.remove_attr(op_maker.kOpRoleVarAttrName())

            # op's update Grad
            if new_op_desc.input("Grad"):
                grad_value = new_op_desc.input("Grad")[0]
                # TODO FIXME(xym) support fp16
                grad_merge_value = grad_value + '@GradientMerge'
                new_op_desc.set_input("Grad", [grad_merge_value])

        main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # clear gradient_merge_vars
        for param, new_grad in new_params_to_grads:
            layers.fill_constant(
                shape=new_grad.shape,
                dtype=new_grad.dtype,
                value=0.0,
                out=new_grad)
            new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
                                  op_maker.OpRole.Optimize)

    layers.cond(cond_var, true_fn=true_apply_gradient, false_fn=None)


def parse_program(main_program, startup_program, params_grads, k_steps, avg,
                  dist_context):
    # 1 create gradient_merge_cond
    cond_var = _get_gm_cond_var(main_program, k_steps)

    # 2 remove optimizer_op from main_program
    optimize_ops_desc = _remove_and_get_optimizer_op(main_program, dist_context)

    # back to block 0
    main_program._rollback()

    # 3 append gradient merge backward op to main_program
    new_params_to_grads, param_to_gradient_merge = _append_gradient_merge_backward_op(
        main_program, startup_program, params_grads, cond_var.name)

    # 4 create ConditionalBlock and append gradient merge optimizer ops
    _create_cond_block_and_update_optimizer(
        main_program, cond_var, new_params_to_grads, param_to_gradient_merge,
        optimize_ops_desc, k_steps, avg)


@register_pass("auto_parallel_gradient_merge_pass")
class GradientMergePass(PassBase):
    def __init__(self):
        super(GradientMergePass, self).__init__()
        self.set_attr("k_steps", -1)
        self.set_attr("avg", True)
        self.set_attr("inner_optimizer", None)

    def _check_self(self):
        if self.get_attr("k_steps") < 1:
            return False
        return True

    def _check_conflict(self, other_pass):
        return True

    def _type(self):
        return PassType.COMM_OPT

    def _apply_single_impl(self, main_program, startup_program, context):
        k_steps = self.get_attr("k_steps", -1)
        avg = self.get_attr("avg", False)
        dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")
        with paddle.static.program_guard(main_program, startup_program):
            parse_program(main_program, startup_program, params_grads, k_steps,
                          avg, dist_context)

        main_program._sync_with_cpp()