elementwise_compute.cc 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

template <typename T>
struct SubFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};

template <typename T>
class ElementwiseSubCompute
L
liuwei1031 已提交
35
    : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
Y
Yan Chunwei 已提交
36 37 38 39 40
 public:
  using param_t = operators::ElementwiseParam;

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
T
tensor-tang 已提交
41
    auto& context = ctx_->As<X86Context>();
Y
Yan Chunwei 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    CHECK(context.x86_device_context);

    param.Out->template mutable_data<T>();
    paddle::operators::ElementwiseComputeEx<SubFunctor<T>,
                                            platform::CPUDeviceContext, T>(
        *context.x86_execution_context, &param.X->raw_tensor(),
        &param.Y->raw_tensor(), param.axis, SubFunctor<T>(),
        &param.Out->raw_tensor());
  }

  virtual ~ElementwiseSubCompute() = default;
};

L
liuwei1031 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
template <typename T>
struct SubGradDX {
  T operator()(T x, T y, T out, T dout) const { return dout; }
};

template <typename T>
struct SubGradDY {
  T operator()(T x, T y, T out, T dout) const { return -dout; }
};

template <typename T>
class ElementwiseSubGradCompute
    : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::ElementwiseGradParam;

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    auto& context = context_->As<X86Context>();
    CHECK(context.x86_device_context);

    param.X_grad->template mutable_data<T>();
    param.Y_grad->template mutable_data<T>();
    // skip out, x, y
    auto dout = param.Out_grad->raw_tensor();
    auto dx = param.X_grad->raw_tensor();
    auto dy = param.Y_grad->raw_tensor();
    auto& skip = dout;
    paddle::operators::ElemwiseExplicitGradCompute<
        platform::CPUDeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
        *context.x86_execution_context, skip, skip, skip, dout, param.axis, &dx,
        &dy, SubGradDX<T>(), SubGradDY<T>());
  }

  virtual ~ElementwiseSubGradCompute() = default;
};

Y
Yan Chunwei 已提交
92 93 94 95 96 97
}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

// float
L
liuwei1031 已提交
98
REGISTER_LITE_KERNEL(elementwise_sub, kX86, kFloat, kNCHW,
Y
Yan Chunwei 已提交
99 100 101 102 103 104
                     paddle::lite::kernels::x86::ElementwiseSubCompute<float>,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();
L
liuwei1031 已提交
105 106 107 108 109 110 111 112 113 114 115

REGISTER_LITE_KERNEL(elementwise_sub_grad, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::ElementwiseSubCompute<float>,
                     def)
    .BindInput(paddle::framework::GradVarName("Out"),
               {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput(paddle::framework::GradVarName("X"),
                {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput(paddle::framework::GradVarName("Y"),
                {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();