node.py 23.7 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
"""Defination of Server and Worker."""
D
dongdaxiang 已提交
14

15
from . import ps_pb2 as pslib
D
dongdaxiang 已提交
16 17 18 19


class Server(object):
    """
20 21
        A Server basic class
        it's a base class, does not have implementation
D
dongdaxiang 已提交
22 23 24 25 26 27 28 29 30
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
31
        it's a base class, does not have implementation
D
dongdaxiang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
D
dongdaxiang 已提交
48 49 50 51 52 53
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
54

55
    def add_sparse_table(self, table_id, strategy):
D
dongdaxiang 已提交
56 57 58
        """
        Args:
            table_id(int): id of sparse params table
59
            strategy(dict): the config dict.
D
dongdaxiang 已提交
60 61 62
        Returns:
            return None 
        """
63

64 65 66 67 68 69 70
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_SPARSE_TABLE, table.type))
71 72
        if strategy is None:
            strategy = dict()
D
dongdaxiang 已提交
73
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
74 75
        table.table_id = table_id
        table.type = pslib.PS_SPARSE_TABLE
76 77 78 79 80

        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                    'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                    'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                    'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
81
                    'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
82
                    'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
83 84
                    'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
                    'sparse_ada_epsilon', 'sparse_optimizer']
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

        for key in strategy:
            if key not in support_sparse_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        support_table_calss = ['DownpourSparseTable']
        if strategy.get('sparse_table_class') is not None:
            table_class = strategy.get('sparse_table_class')
            if table_class not in support_table_calss:
                raise ValueError(
                    "support sparse_table_class: [ 'DownpourSparseTable' ], \
                        but actual %s" % (table_class))
        else:
            table_class = 'DownpourSparseTable'

        table.table_class = table_class

        if table_class == 'DownpourSparseTable':
103 104 105 106 107 108
            table.enable_sparse_table_cache = strategy.get(
                'sparse_enable_cache', True)
            table.sparse_table_cache_rate = strategy.get('sparse_cache_rate',
                                                         0.00055)
            table.sparse_table_cache_file_num = strategy.get(
                'sparse_cache_file_num', 16)
109 110 111
            table.compress_in_save = strategy.get('sparse_compress_in_save',
                                                  True)
            table.shard_num = strategy.get('sparse_shard_num', 1000)
112 113 114
            # DownpourFeatureValueAccessor: for ctr task, has cvm, embedding and sgd info
            # DownpourCtrAccessor         : for ctr task, has cvm, slot, embedding and sgd info
            # DownpourSparseValueAccessor : for general task, has embedding and sgd info
115 116

            support_accessor_class = [
117 118
                'DownpourFeatureValueAccessor', 'DownpourCtrAccessor',
                'DownpourSparseValueAccessor'
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
            ]
            if strategy.get('sparse_accessor_class') is not None:
                accessor_class = strategy.get('sparse_accessor_class')
                if accessor_class not in support_accessor_class:
                    raise ValueError(
                        "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor'], \
                            but actual %s" % (accessor_class))
            else:
                accessor_class = 'DownpourCtrAccessor'

            table.accessor.accessor_class = accessor_class

            if accessor_class == 'DownpourFeatureValueAccessor' or accessor_class == 'DownpourCtrAccessor':
                table.accessor.sparse_sgd_param.learning_rate = strategy.get(
                    'sparse_learning_rate', 0.05)
                table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
                    'sparse_initial_g2sum', 3)
                table.accessor.sparse_sgd_param.initial_range = strategy.get(
                    'sparse_initial_range', 1e-4)
                if strategy.get('sparse_weight_bounds') is None:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        [-10, 10])
                else:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        strategy.get('sparse_weight_bounds'))
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.embedx_threshold = strategy.get(
                    'sparse_embedx_threshold', 10)
                table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
                table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
                    'sparse_nonclk_coeff', 0.1)
                table.accessor.downpour_accessor_param.click_coeff = strategy.get(
                    'sparse_click_coeff', 1)
                table.accessor.downpour_accessor_param.base_threshold = strategy.get(
                    'sparse_base_threshold', 1.5)
                table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
                    'sparse_delta_threshold', 0.25)
                table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
                    'sparse_delta_keep_days', 16)
                table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
                    'sparse_delete_after_unseen_days', 30)
                table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
                    'sparse_show_click_decay_rate', 0.98)
                table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
                    'sparse_delete_threshold', 0.8)
164 165 166 167
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
                table1.converter = converter
                table1.deconverter = deconverter

                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
                table2.converter = converter
                table2.deconverter = deconverter
            elif accessor_class == 'DownpourSparseValueAccessor':
                optimizer_name = strategy.get("sparse_optimizer", "adam")
                table.accessor.sparse_commonsgd_param.name = optimizer_name
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.fea_dim = int(table.accessor.embedx_dim)
                if optimizer_name == "naive":
                    table.accessor.sparse_commonsgd_param.naive.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.naive.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adagrad":
                    table.accessor.sparse_commonsgd_param.adagrad.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_g2sum = strategy.get(
                        'sparse_initial_g2sum', 3)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adam":
                    table.accessor.sparse_commonsgd_param.adam.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.001)
                    table.accessor.sparse_commonsgd_param.adam.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adam.beta1_decay_rate = strategy.get(
                        'sparse_beta1_decay_rate', 0.9)
                    table.accessor.sparse_commonsgd_param.adam.beta2_decay_rate = strategy.get(
                        'sparse_beta2_decay_rate', 0.999)
                    table.accessor.sparse_commonsgd_param.adam.ada_epsilon = strategy.get(
                        'sparse_ada_epsilon', 1e-8)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
231 232 233 234
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

235 236
                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
237 238 239
                table1.converter = converter
                table1.deconverter = deconverter

240 241
                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
242 243
                table2.converter = converter
                table2.deconverter = deconverter
244

245
    def add_dense_table(self, table_id, param_var, grad_var, strategy,
246
                        sparse_table_names):
D
dongdaxiang 已提交
247 248 249
        """
        Args:
            table_id(int): id of sparse params table
250 251 252 253
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the dense config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
254 255 256
        Returns:
            return None 
        """
257
        fea_dim = 0
258 259
        dense_param_vars = []
        for p in param_var:
260
            if p.name not in sparse_table_names:
261 262 263
                dense_param_vars.append(p)

        for param in dense_param_vars:
264 265 266 267 268 269 270 271 272 273
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
274 275 276

        if strategy is None:
            strategy = dict()
T
tangwei12 已提交
277
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
278
        table.table_id = table_id
279 280 281 282 283 284 285 286 287 288
        support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
                'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
                'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']

        for key in strategy:
            if key not in support_dense_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        table.table_class = strategy.get('dense_table_class',
                                         "DownpourDenseTable")
D
dongdaxiang 已提交
289
        table.type = pslib.PS_DENSE_TABLE
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
        table.compress_in_save = strategy.get('dense_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'dense_accessor_class', "DownpourDenseValueAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
                                                           "adam")
        table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
            'dense_learning_rate', 5e-06)
        table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
            'dense_avg_decay', 0.999993)
        table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
            'dense_ada_decay', 0.9999)
        table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
            'dense_ada_epsilon', 1e-8)
        table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
            'dense_mom_decay', 0.99)
        table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
            'dense_naive_lr', 0.0002)
D
dongdaxiang 已提交
307 308
        table.accessor.fea_dim = fea_dim

309
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
310
                            strategy, sparse_table_names):
D
dongdaxiang 已提交
311 312
        """
        Args:
313
            table_id(int): id of datanorm table
314 315 316 317 318
            learning_rate(float): the learning rate used to update parameters
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the datanorm config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
319 320 321
        Returns:
            return None 
        """
322
        fea_dim = 0
323 324
        dense_param_vars = []
        for p in param_var:
325
            if p.name not in sparse_table_names:
326 327 328
                dense_param_vars.append(p)

        for param in dense_param_vars:
329 330 331 332 333 334 335 336 337 338
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
339 340 341 342 343 344 345 346 347 348
        if strategy is None:
            strategy = dict()

        support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save',\
                'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']

        for key in strategy:
            if key not in support_datanorm_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

D
dongdaxiang 已提交
349
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
350
        table.table_id = table_id
351
        table.table_class = strategy.get('datanorm_table_class',
352
                                         'DownpourDenseTable')
D
dongdaxiang 已提交
353
        table.type = pslib.PS_DENSE_TABLE
354 355
        table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
356
            'datanorm_accessor_class', 'DownpourDenseValueAccessor')
357
        table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
358
                                                           'summary')
359 360
        table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
            'datanorm_decay_rate', 0.999999)
D
dongdaxiang 已提交
361 362 363 364 365 366
        table.accessor.fea_dim = fea_dim

    def get_desc(self):
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
367
        return self._server
D
dongdaxiang 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
382
        self._worker = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
383

384 385 386 387 388
    def add_sparse_table(self,
                         table_id,
                         slot_key_vars,
                         slot_value_vars,
                         slot_value_grads=None):
D
dongdaxiang 已提交
389 390 391
        """
        Args:
            table_id(int): id of sparse params table
392 393 394 395
            slot_key_vars(list): slot key id
            slot_value_vars(list): slot key value after embedding
            slot_value_grads(list): grad of all params, default is None

D
dongdaxiang 已提交
396 397 398
        Returns:
            return None 
        """
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        if slot_value_grads is None:
            slot_value_grad_names = \
                [var.name + "@GRAD" for var in slot_value_vars]
        else:
            value_to_key = {}
            for i in range(len(slot_key_vars)):
                value_to_key[slot_value_vars[i].name] = slot_key_vars[i]
            slot_value_grad_names = []
            all_grad_names = [var.name for var in slot_value_grads]
            for var in slot_value_vars:
                if var.name + "@GRAD" in all_grad_names:
                    slot_value_grad_names.append(var.name + "@GRAD")
            sorted_slot_value_vars = [i for i in slot_value_vars if \
                i.name + "@GRAD" in slot_value_grad_names]
            sorted_slot_value_vars += [i for i in slot_value_vars if \
                i.name + "@GRAD" not in slot_value_grad_names]
            sorted_slot_key_vars = \
                [value_to_key[v.name] for v in sorted_slot_value_vars]

        target_table = None
419 420
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
421 422 423 424 425
                keys = table.slot_key
                key_names = [var.name for var in sorted_slot_key_vars]
                for key_name in key_names:
                    if key_name not in keys:
                        raise ValueError("sparse table %s slot_key error" %
426
                                         table_id)
427 428
                target_table = table
                break
429

430 431 432
        table = target_table
        if table is not None:
            self._worker.sparse_table.remove(table)
T
tangwei12 已提交
433
        table = self._worker.sparse_table.add()
D
dongdaxiang 已提交
434
        table.table_id = table_id
435 436 437
        table.slot_key.extend([var.name for var in sorted_slot_key_vars])
        table.slot_value.extend([var.name for var in sorted_slot_value_vars])
        table.slot_gradient.extend(slot_value_grad_names)
D
dongdaxiang 已提交
438

439
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
440
                        dense_start_table_id, sparse_table_names):
D
dongdaxiang 已提交
441 442 443 444 445
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
446 447 448 449
            param_vars(list): all dense param. it is a list.
            grad_vars(list): all dense grad parm it is a list.
            dense_start_table_id(int): dense table start index
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
450 451 452
        Returns:
            return None 
        """
453
        sparse_table_name_grad = []
454
        for name in sparse_table_names:
455 456 457 458
            sparse_table_name_grad.append(name + "@GRAD")

        dense_param_name = []
        for p in param_vars:
459
            if p.name not in sparse_table_names:
460 461 462 463 464 465 466 467 468
                dense_param_name.append(p.name)

        dense_grad_name = []
        for g in grad_vars:
            if g.name not in sparse_table_name_grad:
                dense_grad_name.append(g.name)

        dense_param_name.sort()
        dense_grad_name.sort()
469

470 471
        for table in self._worker.dense_table:
            if table.table_id == table_id:
472
                desc_dense_param_name = list(table.dense_variable_name)
473 474 475
                desc_dense_param_name.sort()

                if dense_param_name == desc_dense_param_name:
476 477
                    desc_dense_grad_name = list(
                        table.dense_gradient_variable_name)
478 479
                    desc_dense_grad_name.sort()
                    if dense_grad_name == desc_dense_grad_name:
480 481 482
                        return
                    else:
                        raise ValueError(
483 484
                            "dense table %s dense_gradient_variable_name "
                            "error" % table_id)
485 486 487 488
                else:
                    raise ValueError(
                        "dense table %s dense_variable_name error" % table_id)

D
dongdaxiang 已提交
489
        table = self._worker.dense_table.add()
D
dongdaxiang 已提交
490
        table.table_id = table_id
491

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        #def cmp_fc(x, y):
        #    if x.startswith("fc_") and y.startswith("fc_"):
        #        index_x = x.find('.')
        #        index_y = y.find('.')
        #        if index_x > 0 and index_y > 0:
        #            num_x = x[3:index_x]
        #            num_y = y[3:index_y]
        #            if num_x.isdigit() and num_y.isdigit():
        #                if int(num_x) < int(num_y):
        #                    return -1
        #                if int(num_x) > int(num_y):
        #                    return 1
        #                if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
        #                    return -1
        #                if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
        #                    return 1
        #    if x < y:
        #        return -1
        #    else:
        #        return 1

        #table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
        #table.dense_gradient_variable_name.extend(
        #    sorted(dense_grad_name, cmp_fc))
        table.dense_variable_name.extend(dense_param_name)
        table.dense_gradient_variable_name.extend(dense_grad_name)
D
dongdaxiang 已提交
518 519 520 521 522

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
523
        return self._worker