adam_op.h 13.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include <Eigen/Dense>
S
sneaxiy 已提交
18
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
20
#include "paddle/fluid/framework/threadpool.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/detail/safe_ref.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/operators/math/algorithm.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
25 26 27 28

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
29 30
namespace scatter = paddle::operators::math::scatter;

31 32 33 34 35 36
struct GPUAdam;
struct CPUAdam;

template <typename T, typename Flavour>
struct AdamFunctor;

Y
Yang Yu 已提交
37
template <typename T>
38
struct AdamFunctor<T, GPUAdam> {
Y
Yang Yu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
52
  T* param_out_;
Y
Yang Yu 已提交
53 54 55

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
56 57
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
58 59 60 61 62 63 64 65 66 67 68
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
69 70
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
71

Y
Yang Yu 已提交
72
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
73 74 75 76 77 78 79
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
80
    T p = param_[i];
Y
Yang Yu 已提交
81 82

    // Calculation
Y
Yang Yu 已提交
83
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
84

Y
Yang Yu 已提交
85 86
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
87
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
88 89 90 91

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
92
    param_out_[i] = p;
Y
Yang Yu 已提交
93 94 95
  }
};

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
template <typename T>
struct AdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out) {}

  void operator()(size_t numel) const {
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
        grad_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
        moment1_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
        moment2_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
        param_, static_cast<Eigen::Index>(numel)};

    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
        param_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
        moment1_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
        moment2_out_, static_cast<Eigen::Index>(numel)};

    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
    moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
    param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
  }
};

T
wip  
typhoonzero 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
template <typename T>
struct SparseAdamFunctor {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
S
sneaxiy 已提交
180
  int64_t row_count_;
T
wip  
typhoonzero 已提交
181 182 183 184 185

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
S
sneaxiy 已提交
186
                    int64_t row_numel, int64_t row_count)
T
wip  
typhoonzero 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
S
sneaxiy 已提交
201 202 203
        row_numel_(row_numel),
        row_count_(row_count) {}

T
wip  
typhoonzero 已提交
204
  inline HOSTDEVICE void operator()(size_t i) const {
S
sneaxiy 已提交
205 206
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
S
sneaxiy 已提交
207 208 209 210 211 212
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;

    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
T
typhoonzero 已提交
213 214
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
S
sneaxiy 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
T
wip  
typhoonzero 已提交
228 229 230
  }
};

Q
QI JUN 已提交
231
template <typename DeviceContext, typename T>
232 233 234
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
235 236 237 238 239 240
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
                   ctx.Inputs("Param").front(), param_var->Type().name());

Y
Yang Yu 已提交
241 242
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
243

244 245 246
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
247
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
T
wip  
typhoonzero 已提交
248 249
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
Y
Yang Yu 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");

T
wip  
typhoonzero 已提交
267 268
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

      if (platform::is_cpu_place(ctx.GetPlace())) {
        AdamFunctor<T, CPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));
        functor(param.numel());
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        AdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));

        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
297 298 299
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
300
      if (grad.rows().size() == 0) {
M
minqiyang 已提交
301
        VLOG(3) << "grad row size is 0!!";
302 303
        return;
      }
S
sneaxiy 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        auto* grad_merge_var = const_cast<framework::Scope&>(ctx.scope())
                                   .Var()
                                   ->GetMutable<framework::SelectedRows>();
        merge_func(ctx.template device_context<DeviceContext>(), grad,
                   grad_merge_var);
        grad_merge_ptr = grad_merge_var;
      }

      auto& grad_merge = *grad_merge_ptr;
T
wip  
typhoonzero 已提交
330
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
331
      const T* grad_data = grad_tensor.template data<T>();
S
sneaxiy 已提交
332 333
      const int64_t* rows = nullptr;
// When compiled without CUDA, the CUDAData() interface should not be
334 335
// provided.
#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
336
      if (platform::is_gpu_place(ctx.GetPlace())) {
S
sneaxiy 已提交
337
        rows = grad_merge.rows().CUDAData(ctx.GetPlace());
D
dzhwinter 已提交
338
      } else {
339
#endif
S
sneaxiy 已提交
340
        rows = grad_merge.rows().data();
341 342

#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
343
      }
344
#endif
T
wip  
typhoonzero 已提交
345
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
346 347 348 349 350 351 352 353

      SparseAdamFunctor<T> functor(
          beta1, beta2, epsilon, beta1_pow.template data<T>(),
          beta2_pow.template data<T>(), mom1.template data<T>(),
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2.template data<T>(),
          mom2_out.template mutable_data<T>(ctx.GetPlace()),
          lr.template data<T>(), grad_data, param.template data<T>(),
S
sneaxiy 已提交
354 355
          param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
          grad_merge.rows().size());
Q
Qiao Longfei 已提交
356 357 358 359
      int inner_op_parallelism = FLAGS_inner_op_parallelism;
      if (inner_op_parallelism > 1 &&
          FLAGS_min_param_size_to_use_multithread > 0 &&
          param.numel() > FLAGS_min_param_size_to_use_multithread) {
Q
add log  
Qiao Longfei 已提交
360
        VLOG(3) << "use multi thread, inner_op_parallelism="
Q
Qiao Longfei 已提交
361
                << inner_op_parallelism << " min_param_size_to_use_multithread="
Q
add log  
Qiao Longfei 已提交
362
                << FLAGS_min_param_size_to_use_multithread;
Q
Qiao Longfei 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
        std::vector<std::future<void>> fs;
        int64_t block_size = param.numel() / inner_op_parallelism;
        for (int i = 0; i < inner_op_parallelism; ++i) {
          int64_t start = i * block_size;
          int64_t end = (i + 1) * block_size;
          if (end > param.numel()) {
            end = param.numel();
          }
          fs.push_back(framework::Async([&functor, start, end]() {
            for (int64_t i = start; i < end; ++i) {
              functor(i);
            }
          }));
        }
        for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
      } else {
        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
384 385 386
    } else {
      PADDLE_THROW("Variable type not supported by adam_op");
    }
387 388 389 390 391
  }
};

}  // namespace operators
}  // namespace paddle