ascend_wrapper.h 6.6 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#ifdef PADDLE_WITH_ASCEND
#include <glog/logging.h>

#include <map>
#include <memory>
#include <string>
#include <vector>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/timer.h"

#include "ge/ge_api.h"
#include "ge/ge_api_types.h"
#include "graph/attr_value.h"
#include "graph/tensor.h"
#include "graph/types.h"

namespace paddle {
namespace framework {

typedef ge::Graph AscendGraphDesc;

42
#ifdef PADDLE_WITH_ASCEND_STRING
L
Leo Chen 已提交
43
using AscendString = ge::AscendString;
44 45 46 47
#else
using AscendString = std::string;
#endif

H
hutuxian 已提交
48 49 50 51 52
class AscendInstance {
 public:
  virtual ~AscendInstance() {}
  AscendInstance() {}

53 54 55 56 57
  std::map<AscendString, AscendString> GetDefaultInitOptions() {
    std::map<AscendString, AscendString> init_options;
    init_options["ge.exec.deviceId"] = "0";
    init_options["ge.graphRunMode"] = "1";
    return init_options;
58 59
  }

60 61 62 63 64
  std::map<AscendString, AscendString> GetDefaultInitSessionOptions() {
    std::map<AscendString, AscendString> init_options;
    init_options["a"] = "b";
    init_options["ge.trainFlag"] = "1";
    return init_options;
65 66
  }

67
  ge::Status InitGEForUT() { return ge::GEInitialize(GetDefaultInitOptions()); }
H
hutuxian 已提交
68 69

  void InitGlobalResouces() {
70 71 72 73 74 75
    LOG(INFO) << "Begin InitGlobalResouces";
    session_.reset(new ge::Session(GetDefaultInitSessionOptions()));
    if (session_ == nullptr) {
      LOG(FATAL) << "new session error:" << session_;
    }
    LOG(INFO) << "End InitGlobalResouces";
H
hutuxian 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  }

  static std::shared_ptr<AscendInstance> GetInstance() {
    if (nullptr == ascend_instance_) {
      ascend_instance_.reset(new paddle::framework::AscendInstance());
      VLOG(1) << "Initialize AscendInstance Done";
    }
    return ascend_instance_;
  }

  void AddAscendSubgraph(int graph_idx, const AscendGraphDesc &graph) {
    ge::Status status = session_->AddGraph(graph_idx, graph);
    PADDLE_ENFORCE_EQ(status, ge::SUCCESS,
                      paddle::platform::errors::PreconditionNotMet(
                          "Calling addGraph of graph engine failed, please "
                          "check Ascend Log."));
    VLOG(1) << "AddAscendSubgraph " << graph_idx << " Done";
  }

  ge::DataType VarTypeToGeType(proto::VarType::Type type) {
    if (type == proto::VarType::FP16) {
      return ge::DataType::DT_FLOAT16;
    } else if (type == proto::VarType::FP32) {
      return ge::DataType::DT_FLOAT;
    } else if (type == proto::VarType::FP64) {
      return ge::DataType::DT_DOUBLE;
    } else if (type == proto::VarType::INT32) {
      return ge::DataType::DT_INT32;
    } else if (type == proto::VarType::INT64) {
      return ge::DataType::DT_INT64;
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Not support %s as tensor type.", DataTypeToString(type)));
    }
  }
  int GeTypeSize(proto::VarType::Type type) {
    if (type == proto::VarType::FP16) {
      return 2;
    } else if (type == proto::VarType::FP32) {
      return 4;
    } else if (type == proto::VarType::FP64) {
      return 8;
    } else if (type == proto::VarType::INT32) {
      return 4;
    } else if (type == proto::VarType::INT64) {
      return 8;
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Not support %s as tensor type.", DataTypeToString(type)));
    }
  }
  ge::Tensor ConvertToGeTensor(const Tensor *tensor) {
    auto numel = tensor->numel();
    std::vector<int64_t> vec_dim;
    auto dimen = arity(tensor->dims());
    for (auto i = 0; i < dimen; ++i) {
      vec_dim.push_back(tensor->dims()[i]);
    }
    // For Debug
    // VLOG(1) << "input numel: " << numel << ", dimen is " << vec_dim.size() <<
    // ", and shape is";
    // for (const auto e : vec_dim) {
    //   VLOG(0) << e;
    // }

    ge::Shape shape(vec_dim);
    ge::TensorDesc tensor_desc(shape, ge::Format::FORMAT_ND,
                               VarTypeToGeType(tensor->type()));
    tensor_desc.SetRealDimCnt(vec_dim.size());

    const uint8_t *data =
        reinterpret_cast<const uint8_t *>(tensor->data<void>());
    std::vector<uint8_t> dst(numel * GeTypeSize(tensor->type()));
    memcpy(dst.data(), data, GeTypeSize(tensor->type()) * numel);
    ge::Tensor ge_tensor(tensor_desc, dst);
    return ge_tensor;
  }

  void RunAscendSubgraph(int graph_idx,
                         const std::vector<const Tensor *> &inputs,
                         std::vector<Tensor *> *outputs) {
    VLOG(1) << "Ascend Graph[" << graph_idx << "] is about to run.";
    // Convert paddle Tensor to GE Tensor
    std::vector<ge::Tensor> ge_inputs;
    for (const auto &e : inputs) {
      ge_inputs.push_back(ConvertToGeTensor(e));
    }

    // Run Graph
    std::vector<ge::Tensor> ge_outputs;
    ge::Status status = session_->RunGraph(graph_idx, ge_inputs, ge_outputs);
    PADDLE_ENFORCE_EQ(status, ge::SUCCESS,
                      paddle::platform::errors::PreconditionNotMet(
                          "Calling RunGraph of graph engine failed, please "
                          "check Ascend Log."));
    VLOG(1) << "Run Ascend Graph[" << graph_idx << "] Done";

    // change tensor back, note all tensor's type computed in GE is uint8
    for (size_t i = 0; i < ge_outputs.size(); ++i) {
      const uint8_t *ret_data = ge_outputs[i].GetData();
      size_t size = ge_outputs[i].GetSize();
      VLOG(1) << "GE Tensor size of the " << i << "th output var is " << size;
      auto *dst = (*outputs)[i]->mutable_data<uint8_t>({(int64_t)size},
                                                       platform::CPUPlace());
      memcpy(dst, ret_data, size);

      // Following for debug:
      // VLOG(0) << "output for " << i << " var: ";
      // float *tmp = reinterpret_cast<float*>(dst);
      // for (size_t j = 0; j < size / 4; ++j) {
      //   printf("%f ", tmp[j]);
      // }
      // printf("\n");
    }
  }

 protected:
  std::shared_ptr<ge::Session> session_;

 private:
  static std::shared_ptr<AscendInstance> ascend_instance_;
};
198 199
}  // namespace framework
}  // namespace paddle
H
hutuxian 已提交
200
#endif