test_engine.cc 7.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda.h>
#include <cuda_runtime_api.h>
#include <glog/logging.h>
#include <gtest/gtest.h>

N
nhzlx 已提交
20 21
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
22
#include "paddle/fluid/inference/tensorrt/engine.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29 30 31
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class TensorRTEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
N
nhzlx 已提交
32 33 34
    ctx_ = new platform::CUDADeviceContext(platform::CUDAPlace(0));

    engine_ = new TensorRTEngine(10, 1 << 10, ctx_->stream());
Y
Yan Chunwei 已提交
35 36 37
    engine_->InitNetwork();
  }

N
nhzlx 已提交
38 39 40 41 42 43 44 45 46 47
  void TearDown() override { delete engine_; }

  void PrepareInputOutput(const std::vector<float> &input,
                          std::vector<int> output_shape) {
    TensorFromVector(input, *ctx_, &input_);
    output_.Resize(framework::make_ddim(output_shape));
  }

  void GetOutput(std::vector<float> *output) {
    TensorToVector(output_, *ctx_, output);
Y
Yan Chunwei 已提交
48 49 50
  }

 protected:
N
nhzlx 已提交
51 52 53 54
  framework::Tensor input_;
  framework::Tensor output_;
  TensorRTEngine *engine_;
  platform::CUDADeviceContext *ctx_;
Y
Yan Chunwei 已提交
55 56 57 58 59 60 61 62
};

TEST_F(TensorRTEngineTest, add_layer) {
  const int size = 1;

  float raw_weight[size] = {2.};  // Weight in CPU memory.
  float raw_bias[size] = {3.};

N
nhzlx 已提交
63 64
  std::vector<void *> buffers(2);  // TRT binded inputs

Y
Yan Chunwei 已提交
65 66 67
  LOG(INFO) << "create weights";
  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, size);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, size);
N
nhzlx 已提交
68
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
Y
Yan Chunwei 已提交
69
                                  nvinfer1::DimsCHW{1, 1, 1});
N
nhzlx 已提交
70
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, size,
Y
Yan Chunwei 已提交
71 72 73 74 75 76 77 78 79
                                        weight.get(), bias.get());
  PADDLE_ENFORCE(fc_layer != nullptr);

  engine_->DeclareOutput(fc_layer, 0, "y");
  LOG(INFO) << "freeze network";
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  // fill in real data
N
nhzlx 已提交
80 81 82 83 84 85 86 87 88 89
  std::vector<float> x_v = {1234};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {1});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

Y
Yan Chunwei 已提交
90
  LOG(INFO) << "to execute";
N
nhzlx 已提交
91
  engine_->Execute(1, buffers);
Y
Yan Chunwei 已提交
92 93

  LOG(INFO) << "to get output";
N
nhzlx 已提交
94
  GetOutput(&y_cpu);
Y
Yan Chunwei 已提交
95 96

  LOG(INFO) << "to checkout output";
N
nhzlx 已提交
97
  ASSERT_EQ(y_cpu[0], x_v[0] * 2 + 3);
Y
Yan Chunwei 已提交
98 99
}

X
Xin Pan 已提交
100 101 102 103 104 105
TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
  // Weight in CPU memory.
  // It seems tensorrt FC use col-major: [[1.0, 3.3], [1.1, 4.4]]
  // instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
  float raw_weight[4] = {1.0, 1.1, 3.3, 4.4};
  float raw_bias[2] = {1.3, 2.4};
N
nhzlx 已提交
106
  std::vector<void *> buffers(2);  // TRT binded inputs
X
Xin Pan 已提交
107 108 109

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 4);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 2);
N
nhzlx 已提交
110
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
X
Xin Pan 已提交
111
                                  nvinfer1::DimsCHW{1, 2, 1});
N
nhzlx 已提交
112
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, 2,
X
Xin Pan 已提交
113 114 115 116 117 118 119
                                        weight.get(), bias.get());
  PADDLE_ENFORCE(fc_layer != nullptr);

  engine_->DeclareOutput(fc_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
120 121 122 123 124 125 126 127 128 129 130 131
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

  engine_->Execute(1, buffers);
X
Xin Pan 已提交
132 133

  LOG(INFO) << "to get output";
N
nhzlx 已提交
134
  GetOutput(&y_cpu);
N
nhzlx 已提交
135

136 137 138 139
  auto dims = engine_->GetITensor("y")->getDimensions();
  ASSERT_EQ(dims.nbDims, 3);
  ASSERT_EQ(dims.d[0], 2);
  ASSERT_EQ(dims.d[1], 1);
N
nhzlx 已提交
140

X
Xin Pan 已提交
141 142 143 144
  ASSERT_EQ(y_cpu[0], 4.5);
  ASSERT_EQ(y_cpu[1], 14.5);
}

145
TEST_F(TensorRTEngineTest, test_conv2d) {
146 147 148
  // Weight in CPU memory.
  float raw_weight[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  float raw_bias[1] = {0};
N
nhzlx 已提交
149
  std::vector<void *> buffers(2);  // TRT binded inputs
150 151 152

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 9);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 1);
N
nhzlx 已提交
153
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
154
                                  nvinfer1::Dims3{1, 3, 3});
N
nhzlx 已提交
155
  auto *conv_layer =
156 157 158 159 160 161 162 163 164 165
      TRT_ENGINE_ADD_LAYER(engine_, Convolution, *x, 1, nvinfer1::DimsHW{3, 3},
                           weight.get(), bias.get());
  PADDLE_ENFORCE(conv_layer != nullptr);
  conv_layer->setStride(nvinfer1::DimsHW{1, 1});
  conv_layer->setPadding(nvinfer1::DimsHW{1, 1});

  engine_->DeclareOutput(conv_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178
  // fill in real data
  std::vector<float> x_v = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                            1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {18});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

  engine_->Execute(2, buffers);
179 180

  LOG(INFO) << "to get output";
N
nhzlx 已提交
181 182
  GetOutput(&y_cpu);

183 184 185 186
  ASSERT_EQ(y_cpu[0], 4.0);
  ASSERT_EQ(y_cpu[1], 6.0);
}

187 188
TEST_F(TensorRTEngineTest, test_pool2d) {
  // Weight in CPU memory.
N
nhzlx 已提交
189
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
190 191
                                  nvinfer1::Dims3{1, 2, 2});

N
nhzlx 已提交
192
  std::vector<void *> buffers(2);  // TRT binded inputs
193
  nvinfer1::PoolingType pool_t = nvinfer1::PoolingType::kAVERAGE;
N
nhzlx 已提交
194 195 196
  auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling,
                                          *const_cast<nvinfer1::ITensor *>(x),
                                          pool_t, nvinfer1::DimsHW{2, 2});
197 198 199 200 201 202 203 204 205

  PADDLE_ENFORCE(pool_layer != nullptr);
  pool_layer->setStride(nvinfer1::DimsHW{1, 1});
  pool_layer->setPadding(nvinfer1::DimsHW{0, 0});

  engine_->DeclareOutput(pool_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
206 207 208 209 210 211 212 213 214 215 216 217
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0, 5.0, 0.0, 2.0, 3.0, 5.0, 10.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

  engine_->Execute(2, buffers);
218 219

  LOG(INFO) << "to get output";
N
nhzlx 已提交
220
  GetOutput(&y_cpu);
221 222 223 224 225

  ASSERT_EQ(y_cpu[0], 2.0);
  ASSERT_EQ(y_cpu[1], 5.0);
}

Y
Yan Chunwei 已提交
226 227 228
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle