interpolate_op.h 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;

template <typename T>
static void NearestNeighborInterpolate(const Tensor& input, Tensor* output,
                                       const float ratio_h, const float ratio_w,
                                       const int n, const int c,
29 30
                                       const int out_h, const int out_w,
                                       const bool align_corners) {
31 32 33
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
  for (int k = 0; k < out_h; k++) {  // loop for images
34 35
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
36 37

    for (int l = 0; l < out_w; l++) {
38 39
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
40 41 42 43 44 45 46 47 48 49 50 51 52 53

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolation(const Tensor& input, Tensor* output,
                                  const float ratio_h, const float ratio_w,
                                  const int in_h, const int in_w, const int n,
54 55 56
                                  const int c, const int out_h, const int out_w,
                                  const bool align_corners,
                                  const bool align_mode) {
57 58 59
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
  for (int k = 0; k < out_h; k++) {  // loop for images
60 61 62
    int y_n = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                  : static_cast<int>(ratio_h * k);
T
tink2123 已提交
63
    y_n = (y_n > 0) ? y_n : 0;
64
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
65 66 67
    float d_n = (align_mode == 0 && !align_corners)
                    ? ratio_h * (k + 0.5) - 0.5 - y_n
                    : ratio_h * k - y_n;
68 69 70
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
71 72 73
      int x_w = (align_mode == 0 && !align_corners)
                    ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                    : static_cast<int>(ratio_w * l);
T
tink2123 已提交
74
      x_w = (x_w > 0) ? x_w : 0;
75
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
76 77 78
      float d_w = (align_mode == 0 && !align_corners)
                      ? ratio_w * (l + 0.5) - 0.5 - x_w
                      : ratio_w * l - x_w;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation
          output_t(i, j, k, l) = input_t(i, j, y_n, x_w) * d_s * d_e +
                                 input_t(i, j, y_s, x_w) * d_n * d_e +
                                 input_t(i, j, y_n, x_e) * d_s * d_w +
                                 input_t(i, j, y_s, x_e) * d_n * d_w;
        }
      }
    }
  }
}

template <typename T>
95 96 97 98
static void NearestNeighborInterpolateGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
    const float ratio_w, const int n, const int c, const int out_h,
    const int out_w, const bool align_corners) {
99 100
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
101

102
  for (int k = 0; k < out_h; k++) {  // loop for images
103 104
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
105 106

    for (int l = 0; l < out_w; l++) {
107 108
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolationGrad(const Tensor& output_grad,
                                      Tensor* input_grad, const float ratio_h,
                                      const float ratio_w, const int in_h,
                                      const int in_w, const int n, const int c,
124 125 126
                                      const int out_h, const int out_w,
                                      const bool align_corners,
                                      const int align_mode) {
127 128 129
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
  for (int k = 0; k < out_h; k++) {  // loop for images
130 131 132
    int y_n = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                  : static_cast<int>(ratio_h * k);
T
tink2123 已提交
133
    y_n = (y_n > 0) ? y_n : 0;
134
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
135 136 137
    float d_n = (align_mode == 0 && !align_corners)
                    ? ratio_h * (k + 0.5) - 0.5 - y_n
                    : ratio_h * k - y_n;
138 139 140
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
141 142 143
      int x_w = (align_mode == 0 && !align_corners)
                    ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                    : static_cast<int>(ratio_w * l);
T
tink2123 已提交
144
      x_w = (x_w > 0) ? x_w : 0;
145
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
146 147 148
      float d_w = (align_mode == 0 && !align_corners)
                      ? ratio_w * (l + 0.5) - 0.5 - x_w
                      : ratio_w * l - x_w;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation grad
          const T grad = output_grad_t(i, j, k, l);
          input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
          input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
          input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
          input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
        }
      }
    }
  }
}
template <typename T>
class InterpolateKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");

    std::string interp_method = ctx.Attr<std::string>("interp_method");
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = out_size->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
180 181
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];

    output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
    auto& device_ctx =
        ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> zero;
    zero(device_ctx, output, static_cast<T>(0.0));

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*input, ctx.GetPlace(), output);
      return;
    }

199 200 201 202 203 204
    float ratio_h = (align_corners && out_h > 1)
                        ? static_cast<float>(in_h - 1) / (out_h - 1)
                        : static_cast<float>(in_h) / out_h;
    float ratio_w = (align_corners && out_w > 1)
                        ? static_cast<float>(in_w - 1) / (out_w - 1)
                        : static_cast<float>(in_w) / out_w;
205 206 207

    if ("bilinear" == interp_method) {
      BilinearInterpolation<T>(*input, output, ratio_h, ratio_w, in_h, in_w, n,
208
                               c, out_h, out_w, align_corners, align_mode);
209 210
    } else if ("nearest" == interp_method) {
      NearestNeighborInterpolate<T>(*input, output, ratio_h, ratio_w, n, c,
211
                                    out_h, out_w, align_corners);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    }
  }
};

template <typename T>
class InterpolateGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));

    std::string interp_method = ctx.Attr<std::string>("interp_method");
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = out_size->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
233 234
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];

    input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace());
    auto& device_ctx =
        ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> zero;
    zero(device_ctx, input_grad, static_cast<T>(0.0));

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*output_grad, ctx.GetPlace(), input_grad);
      return;
    }

252 253 254 255 256 257
    float ratio_h = (align_corners && out_h > 1)
                        ? static_cast<float>(in_h - 1) / (out_h - 1)
                        : static_cast<float>(in_h) / out_h;
    float ratio_w = (align_corners && out_w > 1)
                        ? static_cast<float>(in_w - 1) / (out_w - 1)
                        : static_cast<float>(in_w) / out_w;
258 259 260

    if ("bilinear" == interp_method) {
      BilinearInterpolationGrad<T>(*output_grad, input_grad, ratio_h, ratio_w,
261 262
                                   in_h, in_w, n, c, out_h, out_w,
                                   align_corners, align_mode);
263 264
    } else if ("nearest" == interp_method) {
      NearestNeighborInterpolateGrad<T>(*output_grad, input_grad, ratio_h,
265 266
                                        ratio_w, n, c, out_h, out_w,
                                        align_corners);
267 268 269 270 271 272
    }
  }
};

}  // namespace operators
}  // namespace paddle