roi_pool_op.h 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <algorithm>
#include <limits>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaox 已提交
20 21 22 23

namespace paddle {
namespace operators {

Q
QI JUN 已提交
24
template <typename DeviceContext, typename T>
W
wanghaox 已提交
25
class CPUROIPoolOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
26 27
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
28 29 30 31
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::Tensor>("ROIs");
    auto* out = ctx.Output<framework::Tensor>("Out");
    auto* argmax = ctx.Output<framework::Tensor>("Argmax");
W
wanghaox 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];

    auto in_stride = framework::stride(in_dims);
    auto argmax_stride = framework::stride(argmax->dims());
    auto roi_stride = framework::stride(rois->dims());
W
wanghaox 已提交
47
    auto out_stride = framework::stride(out->dims());
W
wanghaox 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    const T* input_data = in->data<T>();
    const int64_t* rois_data = rois->data<int64_t>();
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    int64_t* argmax_data = argmax->mutable_data<int64_t>(ctx.GetPlace());

    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_id = rois_data[0];
      PADDLE_ENFORCE_GE(roi_batch_id, 0);
      PADDLE_ENFORCE_LT(roi_batch_id, batch_size);
      rois_data += roi_stride[0];
    }

    rois_data = rois->data<int64_t>();
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_id = rois_data[0];
      int roi_start_w = round(rois_data[1] * spatial_scale);
      int roi_start_h = round(rois_data[2] * spatial_scale);
      int roi_end_w = round(rois_data[3] * spatial_scale);
      int roi_end_h = round(rois_data[4] * spatial_scale);

      // Force malformed ROIs to be 1x1
      int roi_height = std::max(roi_end_h - roi_start_h + 1, 1);
      int roi_width = std::max(roi_end_w - roi_start_w + 1, 1);

      const float bin_size_h =
          static_cast<float>(roi_height) / static_cast<float>(pooled_height);
      const float bin_size_w =
          static_cast<float>(roi_width) / static_cast<float>(pooled_width);

W
wanghaox 已提交
78
      const T* batch_data = input_data + roi_batch_id * in_stride[0];
W
wanghaox 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

      for (int c = 0; c < channels; ++c) {
        for (int ph = 0; ph < pooled_height; ++ph) {
          for (int pw = 0; pw < pooled_width; ++pw) {
            //  Compute pooling region for this output unit:
            //  start (included) = floor(ph * roi_height / pooled_height_)
            //  end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
            int hstart =
                static_cast<int>(floor(static_cast<float>(ph) * bin_size_h));
            int wstart =
                static_cast<int>(floor(static_cast<float>(pw) * bin_size_w));
            int hend =
                static_cast<int>(ceil(static_cast<float>(ph + 1) * bin_size_h));
            int wend =
                static_cast<int>(ceil(static_cast<float>(pw + 1) * bin_size_w));

            hstart = std::min(std::max(hstart + roi_start_h, 0), height);
            hend = std::min(std::max(hend + roi_start_h, 0), height);
            wstart = std::min(std::max(wstart + roi_start_w, 0), width);
            wend = std::min(std::max(wend + roi_start_w, 0), width);

            const int pool_index = ph * pooled_width + pw;

            // Define an empty pooling region to be zero
            bool is_empty = (hend <= hstart) || (wend <= wstart);
W
wanghaox 已提交
104
            output_data[pool_index] =
W
wanghaox 已提交
105 106
                is_empty ? 0 : -std::numeric_limits<T>::max();
            argmax_data[pool_index] = -1;
W
wanghaox 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                const int index = h * width + w;
                if (batch_data[index] > output_data[pool_index]) {
                  output_data[pool_index] = batch_data[index];
                  argmax_data[pool_index] = index;
                }
              }
            }
          }
        }

        batch_data += in_stride[1];
        output_data += out_stride[1];
        argmax_data += argmax_stride[1];
      }
      // Increment ROI data pointer
      rois_data += roi_stride[0];
    }
    return;
  }
};

Q
QI JUN 已提交
131
template <typename DeviceContext, typename T>
W
wanghaox 已提交
132
class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
133 134
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
135 136 137
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::Tensor>("ROIs");
    auto* argmax = ctx.Input<framework::Tensor>("Argmax");
W
wanghaox 已提交
138
    auto* out_grad =
W
wanghaox 已提交
139
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
G
guosheng 已提交
140
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
W
wanghaox 已提交
141 142 143 144

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");

G
guosheng 已提交
145
    if (in_grad) {
W
wanghaox 已提交
146
      const int64_t* rois_data = rois->data<int64_t>();
G
guosheng 已提交
147 148 149
      const T* out_grad_data = out_grad->data<T>();
      const int64_t* argmax_data = argmax->data<int64_t>();
      T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
Q
QI JUN 已提交
150 151 152
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.template device_context<DeviceContext>(), in_grad,
               static_cast<T>(0));
W
wanghaox 已提交
153

G
guosheng 已提交
154 155 156 157
      auto in_stride = framework::stride(in->dims());
      auto argmax_stride = framework::stride(argmax->dims());
      auto roi_stride = framework::stride(rois->dims());
      auto out_stride = framework::stride(out_grad->dims());
W
wanghaox 已提交
158

G
guosheng 已提交
159 160
      int rois_num = rois->dims()[0];
      int channels = in->dims()[1];
W
wanghaox 已提交
161

G
guosheng 已提交
162 163 164
      for (int n = 0; n < rois_num; ++n) {
        int roi_batch_idx = rois_data[0];
        T* batch_grad_data = in_grad_data + roi_batch_idx * in_stride[0];
W
wanghaox 已提交
165 166 167
        for (int c = 0; c < channels; ++c) {
          for (int ph = 0; ph < pooled_height; ++ph) {
            for (int pw = 0; pw < pooled_width; ++pw) {
G
guosheng 已提交
168
              int pool_index = ph * pooled_width + pw;
W
wanghaox 已提交
169
              if (argmax_data[pool_index] >= 0) {
G
guosheng 已提交
170
                auto index = argmax_data[pool_index];
W
wanghaox 已提交
171 172 173 174
                batch_grad_data[index] += out_grad_data[pool_index];
              }
            }
          }
G
guosheng 已提交
175 176 177
          batch_grad_data += in_stride[1];
          out_grad_data += out_stride[1];
          argmax_data += argmax_stride[1];
W
wanghaox 已提交
178
        }
G
guosheng 已提交
179
        rois_data += roi_stride[0];
W
wanghaox 已提交
180 181 182 183 184 185 186
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle