vol2col.h 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <vector>
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device_context.h"
C
chengduoZH 已提交
21 22 23 24

namespace paddle {
namespace operators {
namespace math {
25 26 27

using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
28 29 30 31 32 33 34 35 36 37 38
/*
 * \brief Converts the feature data of four dimensions(CDHW) into a colData of
 *        seven dimensions in the Vol2ColFunctor calculation,
 *        And in the Col2VolFunctor calculation, it is reversed.
 *
 * \param volData   Vol data.
 * \param volShape  The shape of volData,
 *                 [input_channels, input_depth, input_height, input_width].
 * \param colData  Column data.
 * \param colShape The shape of colData.
 *
C
chengduoZH 已提交
39 40 41 42 43 44 45 46 47
 * \param dilations    dilation data.
 * \param 3-dimension  [dilation_depth, dilation_height, dilation_width].
 *
 * \param strides      stride data.
 * \param 3-dimension  [stride_depth, stride_height, stride_width].
 *
 * \param paddings     padding data.
 * \param 3-dimension  [d_pad, h_pad, w_pad].
 *
C
chengduoZH 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 * The shape of colData is:
 * [input_channels, filter_depth, filter_height, filter_width, output_depth,
 * output_height, output_width]
 * So, it is easy to reshape into a convolution matrix for convolution
 * calculation based on matrix multiplication.
 * The shape of convolution matrix is [height, width], where the height is equal
 * input_channels * filter_depth * filter_height * filter_width, and the width
 * is equal output_depth * output_height * output_width.
 *
 * Reshape:
 *     shape of colData           shape of convolution matrix
 *     [input_channels,
 *      filter_depth,
 *      filter_height,
 *      filter_width,      ======>      [height, width]
 *      output_depth,
 *      output_height,
 *      output_width]
 *
 * \note The caller needs to ensure that volShape.inputChannels is equal to
 *       colShape.inputChannels.
 */
Q
QI JUN 已提交
70
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
71 72
class Vol2ColFunctor {
 public:
Q
QI JUN 已提交
73
  void operator()(const DeviceContext& context, const framework::Tensor& vol,
C
chengduoZH 已提交
74 75
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
76 77
                  const std::vector<int>& paddings, framework::Tensor* col,
                  const DataLayout data_layout = DataLayout::kNCHW) const;
C
chengduoZH 已提交
78 79
};

Q
QI JUN 已提交
80
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
81 82
class Col2VolFunctor {
 public:
Q
QI JUN 已提交
83
  void operator()(const DeviceContext& context, const framework::Tensor& col,
C
chengduoZH 已提交
84 85
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
86 87
                  const std::vector<int>& paddings, framework::Tensor* vol,
                  const DataLayout data_layout = DataLayout::kNCHW) const;
C
chengduoZH 已提交
88 89 90 91 92
};

}  // namespace math
}  // namespace operators
}  // namespace paddle