embedding_grad_kernel.cc 7.5 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/embedding_grad_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
P
phlrain 已提交
19
#include "paddle/phi/common/data_type.h"
P
phlrain 已提交
20 21 22 23 24
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
P
phlrain 已提交
25 26 27 28 29 30 31
struct EmbeddingGradCPUFunctor {
  EmbeddingGradCPUFunctor(const Context& dev_ctx,
                          const DenseTensor& input,
                          const DenseTensor& weight,
                          const DenseTensor& out_grad,
                          int64_t padding_idx,
                          DenseTensor* weight_grad)
P
phlrain 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_grad_(out_grad),
        weight_grad_(weight_grad),
        padding_idx_(padding_idx) {}

  template <typename IdT>
  void apply() {
    DDim table_dim = weight_.dims();

    auto ids = CopyIdsToVector<IdT, int64_t>(input_);
    auto ids_num = static_cast<int64_t>(ids.size());

    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    {
      auto* d_output = &out_grad_;
      auto* ids_data = ids.data();

      int64_t N = table_dim[0];
      int64_t D = table_dim[1];

      auto* d_output_data = d_output->template data<T>();

      dev_ctx_.template Alloc<T>(weight_grad_);
      auto* d_table_data = weight_grad_->data<T>();

      memset(d_table_data, 0, weight_grad_->numel() * sizeof(T));

      for (int64_t i = 0; i < ids_num; ++i) {
        if (padding_idx_ != kNoPadding && ids_data[i] == padding_idx_) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
          PADDLE_ENFORCE_LT(
              ids_data[i],
              N,
              phi::errors::InvalidArgument(
P
phlrain 已提交
71 72
                  "Variable value (input) of "
                  "OP(paddle.nn.functional.embedding) "
P
phlrain 已提交
73 74 75 76 77 78 79 80
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N,
                  ids_data[i]));
          PADDLE_ENFORCE_GE(
              ids_data[i],
              0,
              phi::errors::InvalidArgument(
P
phlrain 已提交
81 82
                  "Variable value (input) of "
                  "OP(paddle.nn.functional.embedding) "
P
phlrain 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N,
                  ids_data[i]));
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
        }
      }
    }
  }

 private:
  const Context& dev_ctx_;
  const DenseTensor& input_;
  const DenseTensor& weight_;
  const DenseTensor& out_grad_;
  DenseTensor* weight_grad_;
  int64_t padding_idx_;
};

template <typename T, typename Context>
void EmbeddingGradKernel(const Context& ctx,
                         const DenseTensor& input,
                         const DenseTensor& weight,
                         const DenseTensor& out_grad,
                         int64_t padding_idx,
                         DenseTensor* weight_grad) {
P
phlrain 已提交
111
  EmbeddingGradCPUFunctor<T, Context> functor(
P
phlrain 已提交
112
      ctx, input, weight, out_grad, padding_idx, weight_grad);
P
phlrain 已提交
113 114 115 116 117 118 119
  if (input.dtype() == phi::DataType::INT32) {
    functor.template apply<int>();
  } else if (input.dtype() == phi::DataType::INT64) {
    functor.template apply<int64_t>();
  } else {
    PADDLE_THROW("emebdding input only support int32 and int64");
  }
P
phlrain 已提交
120 121
}

P
phlrain 已提交
122
template <typename T, typename Context>
P
phlrain 已提交
123 124 125 126 127 128 129
struct EmbeddingSparseGradCPUFunctor {
  EmbeddingSparseGradCPUFunctor(const Context& dev_ctx,
                                const DenseTensor& input,
                                const DenseTensor& weight,
                                const DenseTensor& out_grad,
                                int64_t padding_idx,
                                SelectedRows* weight_grad)
P
phlrain 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_grad_(out_grad),
        weight_grad_(weight_grad),
        padding_idx_(padding_idx) {}

  template <typename IdT>
  void apply() {
    DDim table_dim = weight_.dims();

    auto ids = CopyIdsToVector<IdT, int64_t>(input_);
    auto ids_num = static_cast<int64_t>(ids.size());

    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    auto* d_table = weight_grad_;
    auto* d_output = &out_grad_;
    d_table->set_rows(ids);

    auto* d_table_value = d_table->mutable_value();
    d_table_value->Resize({ids_num, table_dim[1]});

P
phlrain 已提交
153
    dev_ctx_.template Alloc<T>(d_table_value);
P
phlrain 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    d_table->set_height(table_dim[0]);

    auto* d_output_data = d_output->template data<T>();
    auto* d_table_data = d_table_value->template data<T>();

    auto d_output_dims = d_output->dims();
    auto d_output_dims_2d =
        flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
    PADDLE_ENFORCE_EQ(d_table_value->dims(),
                      d_output_dims_2d,
                      phi::errors::InvalidArgument(
                          "ShapeError: The shape of lookup_table@Grad and "
                          "output@Grad should be same. "
                          "But received lookup_table@Grad's shape = [%s], "
                          "output@Grad's shape = [%s].",
                          d_table_value->dims(),
                          d_output_dims_2d));
    memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
  }

 private:
  const Context& dev_ctx_;
  const DenseTensor& input_;
  const DenseTensor& weight_;
  const DenseTensor& out_grad_;
  SelectedRows* weight_grad_;
  int64_t padding_idx_;
};

template <typename T, typename Context>
void EmbeddingSparseGradKernel(const Context& ctx,
                               const DenseTensor& input,
                               const DenseTensor& weight,
                               const DenseTensor& out_grad,
                               int64_t padding_idx,
                               SelectedRows* weight_grad) {
P
phlrain 已提交
191
  EmbeddingSparseGradCPUFunctor<T, Context> functor(
P
phlrain 已提交
192
      ctx, input, weight, out_grad, padding_idx, weight_grad);
P
phlrain 已提交
193 194 195 196 197 198 199
  if (input.dtype() == phi::DataType::INT32) {
    functor.template apply<int>();
  } else if (input.dtype() == phi::DataType::INT64) {
    functor.template apply<int64_t>();
  } else {
    PADDLE_THROW("emebdding input only support int32 and int64");
  }
P
phlrain 已提交
200 201
}

P
phlrain 已提交
202 203
}  // namespace phi

P
phlrain 已提交
204
PD_REGISTER_KERNEL(embedding_grad,
P
phlrain 已提交
205 206 207 208 209
                   CPU,
                   ALL_LAYOUT,
                   phi::EmbeddingGradKernel,
                   float,
                   double,
P
phlrain 已提交
210
                   phi::dtype::bfloat16) {}
P
phlrain 已提交
211 212 213 214 215 216 217

PD_REGISTER_KERNEL(embedding_sparse_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::EmbeddingSparseGradKernel,
                   float,
                   double,
P
phlrain 已提交
218
                   phi::dtype::bfloat16) {}