density_prior_box.cc 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/anakin/convert/density_prior_box.h"
#include <algorithm>
#include <map>
#include <vector>

using anakin::graph::GraphGlobalMem;
using anakin::AK_FLOAT;
using anakin::saber::NV;
using anakin::saber::Shape;
using anakin::PTuple;

namespace paddle {
namespace inference {
namespace anakin {

30 31 32
void DensityPriorBoxOpConverter::operator()(
    const framework::proto::OpDesc& op, const framework::BlockDesc& block_desc,
    const framework::Scope& scope, bool test_mode) {
33 34 35 36
  framework::OpDesc op_desc(op, nullptr);
  auto input_name = op_desc.Input("Input").front();
  auto image_name = op_desc.Input("Image").front();
  auto output_name = op_desc.Output("Boxes").front();
N
nhzlx 已提交
37 38
  auto op_type = op_desc.Type();
  auto op_name = op_type + ":" + op_desc.Output("Boxes").front();
39

N
nhzlx 已提交
40 41 42 43
  // only for density_prior_box
  std::vector<float> fixed_sizes = {};
  std::vector<float> fixed_ratios = {};
  std::vector<int> densities = {};
44

N
nhzlx 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
  std::vector<float> min_sizes = {};
  std::vector<float> max_sizes = {};
  std::vector<float> aspect_ratios = {};
  bool is_clip = false;
  bool is_flip = false;

  if (op_type == "density_prior_box") {
    fixed_sizes =
        boost::get<std::vector<float>>(op_desc.GetAttr("fixed_sizes"));
    fixed_ratios =
        boost::get<std::vector<float>>(op_desc.GetAttr("fixed_ratios"));
    densities = boost::get<std::vector<int>>(op_desc.GetAttr("densities"));
    is_clip = boost::get<bool>(op_desc.GetAttr("clip"));
  } else if (op_type == "prior_box") {
    min_sizes = boost::get<std::vector<float>>(op_desc.GetAttr("min_sizes"));
    max_sizes = boost::get<std::vector<float>>(op_desc.GetAttr("max_sizes"));
    aspect_ratios =
        boost::get<std::vector<float>>(op_desc.GetAttr("aspect_ratios"));
    is_clip = boost::get<bool>(op_desc.GetAttr("clip"));
    is_flip = boost::get<bool>(op_desc.GetAttr("flip"));
  }
66 67 68 69
  std::vector<float> dens;
  for (auto& ele : densities) {
    dens.push_back(static_cast<float>(ele));
  }
70 71 72 73 74 75 76

  auto variances = boost::get<std::vector<float>>(op_desc.GetAttr("variances"));

  // lack img_h, img_w
  auto step_h = boost::get<float>(op_desc.GetAttr("step_h"));
  auto step_w = boost::get<float>(op_desc.GetAttr("step_w"));
  auto offset = boost::get<float>(op_desc.GetAttr("offset"));
77 78 79 80 81
  PTuple<std::string> t_order;
  t_order.push_back("MIN");
  t_order.push_back("COM");
  t_order.push_back("MAX");

82 83 84
  std::vector<float> temp_v = {};

  engine_->AddOp(op_name, "PriorBox", {input_name, image_name}, {output_name});
N
nhzlx 已提交
85 86 87
  engine_->AddOpAttr<PTuple<float>>(op_name, "min_size", min_sizes);
  engine_->AddOpAttr<PTuple<float>>(op_name, "max_size", max_sizes);
  engine_->AddOpAttr<PTuple<float>>(op_name, "aspect_ratio", aspect_ratios);
88 89 90
  engine_->AddOpAttr<PTuple<float>>(op_name, "fixed_size", fixed_sizes);
  engine_->AddOpAttr<PTuple<float>>(op_name, "fixed_ratio", fixed_ratios);
  engine_->AddOpAttr<PTuple<float>>(op_name, "density", dens);
N
nhzlx 已提交
91 92
  engine_->AddOpAttr(op_name, "is_flip", is_flip);
  engine_->AddOpAttr(op_name, "is_clip", is_clip);
93 94 95 96 97 98
  engine_->AddOpAttr<PTuple<float>>(op_name, "variance", variances);
  engine_->AddOpAttr(op_name, "img_h", static_cast<int>(0));
  engine_->AddOpAttr(op_name, "img_w", static_cast<int>(0));
  engine_->AddOpAttr(op_name, "step_h", step_h);
  engine_->AddOpAttr(op_name, "step_w", step_w);
  engine_->AddOpAttr(op_name, "offset", offset);
99
  engine_->AddOpAttr<PTuple<std::string>>(op_name, "order", t_order);
100 101 102 103 104 105 106
}

}  // namespace anakin
}  // namespace inference
}  // namespace paddle

REGISTER_ANAKIN_OP_CONVERTER(density_prior_box, DensityPriorBoxOpConverter);
N
nhzlx 已提交
107
REGISTER_ANAKIN_OP_CONVERTER(prior_box, DensityPriorBoxOpConverter);