dropout_op.cc 4.1 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/dropout_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
29 30
    PADDLE_ENFORCE_GE(ctx.Attr<float>("dropout_prob"), 0);
    PADDLE_ENFORCE_LE(ctx.Attr<float>("dropout_prob"), 1);
31

X
Xinghai Sun 已提交
32
    auto dims = ctx.Input<Tensor>("X")->dims();
D
dangqingqing 已提交
33
    ctx.Output<Tensor>("Out")->Resize(dims);
34
    if (ctx.Attr<bool>("is_training")) {
D
dangqingqing 已提交
35
      ctx.Output<Tensor>("Mask")->Resize(dims);
36
    }
37
    ctx.ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
38 39 40
  }
};

41
template <typename AttrType>
X
Xinghai Sun 已提交
42 43 44 45 46
class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  DropoutOpMaker(framework::OpProto *proto,
                 framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
47
    AddAttr<AttrType>("dropout_prob", "Probability of setting units to zero.")
48
        .SetDefault(.5f);
49
    AddAttr<bool>("is_training", "Whether in training phase.").SetDefault(true);
50
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
X
Xinghai Sun 已提交
51 52
    AddInput("X", "The input of dropout op.");
    AddOutput("Out", "The output of dropout op.");
53
    AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
X
Xinghai Sun 已提交
54

55 56 57
    AddComment(R"DOC(
Dropout Operator.

58
'Dropout' refers to randomly dropping out units in a nerual network. It is a
59 60
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
61
the given dropout probability) the outputs of some units to zero, while others
62 63
being set to their inputs.
)DOC");
X
Xinghai Sun 已提交
64 65 66
  }
};

67
template <typename AttrType>
X
Xinghai Sun 已提交
68 69 70 71 72 73
class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
74 75
    PADDLE_ENFORCE(ctx.Attr<bool>("is_training"),
                   "GradOp is only callable when is_training is true");
76

X
Xinghai Sun 已提交
77 78 79 80
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Mask"), "Mask must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) must not be null.");
81

82 83
    PADDLE_ENFORCE_GE(ctx.Attr<AttrType>("dropout_prob"), 0);
    PADDLE_ENFORCE_LE(ctx.Attr<AttrType>("dropout_prob"), 1);
X
Xinghai Sun 已提交
84 85 86
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
    PADDLE_ENFORCE_EQ(x_dims, out_dims,
X
Xinghai Sun 已提交
87
                      "Dimensions of Input(X) and Out@Grad must be the same.");
88
    auto mask_dims = ctx.Input<Tensor>("Mask")->dims();
X
Xinghai Sun 已提交
89 90
    PADDLE_ENFORCE_EQ(x_dims, mask_dims,
                      "Dimensions of Input(X) and Mask must be the same.");
91

D
dangqingqing 已提交
92
    auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
X
Xinghai Sun 已提交
93 94 95 96 97 98 99 100
    x_grad->Resize(x_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
101 102
REGISTER_OP(dropout, ops::DropoutOp, ops::DropoutOpMaker<float>, dropout_grad,
            ops::DropoutOpGrad<float>);
103
REGISTER_OP_CPU_KERNEL(
104
    dropout, ops::CPUDropoutKernel<paddle::platform::CPUPlace, float, float>);
X
Xinghai Sun 已提交
105 106
REGISTER_OP_CPU_KERNEL(
    dropout_grad, ops::DropoutGradKernel<paddle::platform::CPUPlace, float>);