conv_transpose_op.h 13.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
Siddharth Goyal 已提交
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
C
chengduoZH 已提交
22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

// Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code.
C
chengduoZH 已提交
31 32
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
33
  void Make() override;
C
chengduoZH 已提交
34 35
};

C
chengduoZH 已提交
36 37
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
38
  void Make() override;
C
chengduoZH 已提交
39 40
};

C
chengduoZH 已提交
41
class ConvTransposeOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
42 43 44
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
45 46 47 48

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
C
chengduoZH 已提交
49 50
};

C
chengduoZH 已提交
51
class ConvTransposeOpGrad : public framework::OperatorWithKernel {
C
chengduoZH 已提交
52 53 54
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
55 56 57 58

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
C
chengduoZH 已提交
59 60
};

Q
QI JUN 已提交
61
template <typename DeviceContext, typename T>
62
class GemmConvTransposeKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
63 64 65 66 67 68 69 70
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped, so it should not be constant pointer
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
C
chengduoZH 已提交
71
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
72
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
73
    int groups = context.Attr<int>("groups");
C
chengduoZH 已提交
74

C
chengduoZH 已提交
75
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
76

C
chengduoZH 已提交
77
    // input_shape_vec: {n, c, h, w} or {n, c, d, h, w}
78
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
C
chengduoZH 已提交
79
    // filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
80 81 82 83
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
Y
Yibing Liu 已提交
84
    // col_shape_vec: {c/g, k_h, k_w, h, w} or {c/g, k_d, k_h, k_w, d, h, w}
C
chengduoZH 已提交
85 86
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
Y
Yibing Liu 已提交
87
    col_shape_vec[0] = output->dims()[1] / groups;
C
chengduoZH 已提交
88 89 90 91
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2];
    }
92
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
93 94

    // use col_matrix_shape in the gemm calculation
Y
Yibing Liu 已提交
95
    // size: (c/g * k_h * k_w, h * w) or (c/g * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
96
    DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
97 98 99 100 101 102 103 104 105 106

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix;
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);

107 108 109
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape =
        framework::slice_ddim(output->dims(), 1, output->dims().size());
C
chengduoZH 已提交
110

111 112 113
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};

Y
Yibing Liu 已提交
114
    // filter size: (m, c/g * k_h * k_w) or (m, c/g * k_d * k_h * k_w)
115
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
C
chengduoZH 已提交
116 117 118
    filter.Resize(filter_matrix_shape);

    output->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
119 120
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
121
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
Q
QI JUN 已提交
122
    set_zero(dev_ctx, output, static_cast<T>(0));
C
chengduoZH 已提交
123

Y
Yibing Liu 已提交
124 125
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output->dims()[1]) / groups;
Q
QI JUN 已提交
126 127
    math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
    math::Col2VolFunctor<DeviceContext, T> col2vol;
C
chengduoZH 已提交
128

129 130
    // convolution transpose: gemm + col2im or col2vol (similar to conv-backward
    // on input)
C
chengduoZH 已提交
131
    for (int i = 0; i < batch_size; i++) {
132
      // batch with size (m, h * w) or (m, d * h * w)
C
chengduoZH 已提交
133 134
      Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);

135
      // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
C
chengduoZH 已提交
136 137
      Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);

Y
Yibing Liu 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = input_batch.Slice(g * in_step, (g + 1) * in_step);
        Tensor filter_slice = filter.Slice(g * in_step, (g + 1) * in_step);
        Tensor out_slice = output_batch.Slice(g * out_step, (g + 1) * out_step);

        // col_matrix = filter_slice * input_slice
        // of shape (c/g * k_h * k_w, h * w)
        // or (c/g * k_d * k_h * k_w, d * h * w)
        blas.MatMul(filter_slice, true, in_slice, false, static_cast<T>(1.0),
                    &col_matrix, static_cast<T>(0.0));

        if (data_dim == 2U) {
          // col2im: col_matrix -> dy
          // from (c/g * k_h * k_w, h * w) to (c/g, o_h, o_w)
          col2im(dev_ctx, col, dilations, strides,
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &out_slice);
        } else if (data_dim == 3U) {
          // col2vol: col_matrix -> dy
          // from (c/g * k_d * k_h * k_w, d * h * w) to (c/g, o_d, o_h, o_w)
          col2vol(dev_ctx, col, dilations, strides, paddings, &out_slice);
        }
161
      }
C
chengduoZH 已提交
162 163 164 165
    }
  }
};

Q
QI JUN 已提交
166
template <typename DeviceContext, typename T>
167
class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    // For filter, we do not use const pointer b/c we will do reshape,
    // but we should avoid modifying its value.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

181 182
    if ((!input_grad) && (!filter_grad)) return;

C
chengduoZH 已提交
183 184
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
185
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
186
    int groups = context.Attr<int>("groups");
C
chengduoZH 已提交
187

C
chengduoZH 已提交
188
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
189

C
chengduoZH 已提交
190
    // input_shape_vec: {n, c, h, w} or {n, c, d, h, w}
191
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
C
chengduoZH 已提交
192
    // filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
193 194 195 196 197
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
    // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
C
chengduoZH 已提交
198 199 200 201 202 203 204
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = output_grad->dims()[1];
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2];
    }
205
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
206

207 208
    // use col_matrix_shape in the gemm calculation
    // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
209
    DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
210

211 212 213
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape = framework::slice_ddim(output_grad->dims(), 1,
                                              output_grad->dims().size());
C
chengduoZH 已提交
214

215 216
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
C
chengduoZH 已提交
217

Y
Yibing Liu 已提交
218 219
    // filter size: (m, c/g * k_h * k_w) or (m, c/g * k_d * k_h * k_w)
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0] / groups};
C
chengduoZH 已提交
220
    filter.Resize(filter_matrix_shape);
Y
Yibing Liu 已提交
221 222
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int col_step = static_cast<int>(col_matrix_shape[0]) / groups;
C
chengduoZH 已提交
223 224 225 226

    // convolution transpose grad on input:
    // im2col + gemm (similar to conv-forward)
    // input need to compute gradient
Q
QI JUN 已提交
227
    auto& dev_ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
228
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
229 230 231 232 233 234
    if (input_grad || filter_grad) {
      Tensor col;
      col.mutable_data<T>(col_shape, context.GetPlace());
      // col_matrix shares the same piece of data with col,
      // but will be reshaped into a two-dimensional matrix shape
      // to call the matrix multiplication interface.
C
chengduoZH 已提交
235 236 237 238
      Tensor col_matrix;
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);

C
chengduoZH 已提交
239
      Tensor filter_grad_;
Q
QI JUN 已提交
240
      math::SetConstant<DeviceContext, T> set_zero;
C
chengduoZH 已提交
241

Q
QI JUN 已提交
242 243
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
244

C
chengduoZH 已提交
245 246 247
      if (input_grad) {
        input_grad->mutable_data<T>(context.GetPlace());
      }
Y
Yibing Liu 已提交
248
      if (filter_grad) {  // filter size (m, c/g, k_h, k_w)
C
chengduoZH 已提交
249
        filter_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
250
        set_zero(dev_ctx, filter_grad, static_cast<T>(0));
C
chengduoZH 已提交
251 252
        filter_grad_ = *filter_grad;
        filter_grad_.Resize(filter_matrix_shape);
C
chengduoZH 已提交
253 254
      }

C
chengduoZH 已提交
255 256
      for (int i = 0; i < batch_size; i++) {
        // batch with size (c, o_h * o_w)
C
chengduoZH 已提交
257 258 259
        Tensor output_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_shape);

C
chengduoZH 已提交
260
        if (data_dim == 2U) {
261 262
          // im2col: dy -> col matrix
          // from (c, o_h, o_w) to (c * k_h * k_w, h * w)
263
          im2col(dev_ctx, output_grad_batch, dilations, strides,
C
chengduoZH 已提交
264 265 266
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
267
        } else if (data_dim == 3U) {
268 269
          // vol2col: dy -> col_matrix
          // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
Q
QI JUN 已提交
270 271
          vol2col(dev_ctx, output_grad_batch, dilations, strides, paddings,
                  &col);
272
        }
C
chengduoZH 已提交
273

C
chengduoZH 已提交
274 275 276 277 278 279
        if (input_grad) {
          // batch with size (m, h, w)
          Tensor input_grad_batch =
              input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: dx = filter * dy
          // (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
280
          // or
C
chengduoZH 已提交
281 282
          // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
          // d, h, w)
Y
Yibing Liu 已提交
283 284 285 286 287 288 289 290 291 292 293
          for (int g = 0; g < groups; g++) {
            Tensor input_grad_slice =
                input_grad_batch.Slice(g * in_step, (g + 1) * in_step);
            Tensor filter_slice = filter.Slice(g * in_step, (g + 1) * in_step);
            Tensor col_matrix_slice =
                col_matrix.Slice(g * col_step, (g + 1) * col_step);

            blas.MatMul(filter_slice, false, col_matrix_slice, false,
                        static_cast<T>(1.0), &input_grad_slice,
                        static_cast<T>(0.0));
          }
C
chengduoZH 已提交
294 295 296 297 298
        }
        if (filter_grad) {
          // input batch
          Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: d_filter = x * dy^T
299 300
          // (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
          // or
C
chengduoZH 已提交
301 302
          // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
          // k_h * k_w)
Y
Yibing Liu 已提交
303 304 305 306 307 308 309 310 311 312 313
          for (int g = 0; g < groups; g++) {
            Tensor in_batch_slice =
                in_batch.Slice(g * in_step, (g + 1) * in_step);
            Tensor filter_grad_slice =
                filter_grad_.Slice(g * in_step, (g + 1) * in_step);
            Tensor col_matrix_slice =
                col_matrix.Slice(g * col_step, (g + 1) * col_step);
            blas.MatMul(in_batch_slice, false, col_matrix_slice, true,
                        static_cast<T>(1.0), &filter_grad_slice,
                        static_cast<T>(1.0));
          }
C
chengduoZH 已提交
314
        }
C
chengduoZH 已提交
315 316 317 318 319 320
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle