multiplex_op.h 2.3 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename T>
class MultiplexCPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto ins = ctx.MultiInput<framework::Tensor>("X");
29
    auto* out = ctx.Output<framework::LoDTensor>("Out");
Y
Yibing Liu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    out->mutable_data<T>(ctx.GetPlace());

    auto index = ins[0]->data<T>();
    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
    for (auto i = 0; i < rows; i++) {
      int k = (int)index[i] + 1;
      memcpy(out->data<T>() + i * cols, ins[k]->data<T>() + i * cols,
             cols * sizeof(T));
    }
  }
};

template <typename T>
class MultiplexGradCPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto ins = ctx.MultiInput<framework::Tensor>("X");
    auto d_ins =
        ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
51 52 53 54 55 56
    for (size_t i = 1; i < d_ins.size(); i++) {
      if (d_ins[i]) {
        d_ins[i]->mutable_data<T>(ctx.GetPlace());
        auto dims = d_ins[i]->dims();
        memset(d_ins[i]->data<T>(), 0, framework::product(dims) * sizeof(T));
      }
Y
Yibing Liu 已提交
57 58 59 60 61 62 63
    }

    auto index = ins[0]->data<T>();
    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
    for (auto i = 0; i < rows; i++) {
      int k = (int)index[i] + 1;
64 65 66 67
      if (d_ins[k]) {
        memcpy(d_ins[k]->data<T>() + i * cols, d_out->data<T>() + i * cols,
               cols * sizeof(T));
      }
Y
Yibing Liu 已提交
68 69 70 71 72
    }
  }
};
}
}