multiplex_op.cc 4.3 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/multiplex_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
21
using LoDTensor = framework::LoDTensor;
Y
Yibing Liu 已提交
22 23 24 25 26 27 28 29 30 31

class MultiplexOp : public framework::OperatorWithKernel {
 public:
  MultiplexOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
32 33 34 35
    PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(),
                   "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Output(Out) shouldn't be null.");
Y
Yibing Liu 已提交
36
    auto ins = ctx.MultiInput<Tensor>("X");
37
    auto *out = ctx.Output<LoDTensor>("Out");
Y
Yibing Liu 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    auto num_ins = ins.size();
    PADDLE_ENFORCE(num_ins > 2,
                   "multiplex operator should have more than 2 inputs.");
    PADDLE_ENFORCE_EQ(ins[0]->dims().size(), 1,
                      "The first input must be a index vector.");
    auto in_dim = ins[1]->dims();

    for (size_t i = 2; i < num_ins; i++) {
      auto dim = ins[i]->dims();
      PADDLE_ENFORCE(
          in_dim == dim,
          "All the input tensors except the first one must have the same size");
    }
    out->Resize(in_dim);
  }
};

class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MultiplexOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
60
    AddInput("X", "The input tensors of multiplex operator.").AsDuplicable();
Y
Yibing Liu 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    AddOutput("Out", "The output tensor of multiplex operator.");
    AddComment(R"DOC(Multiplex operator

Multiplex multiple tensors according to the index provided by the first
input tensor.

ins[0]: the index of the tensor to output of size batchSize.
ins[1:N]: the candidate output tensor.
For each index i from 0 to batchSize - 1, the output is the i-th row of the
the (index[i] + 1)-th tensor.

For each i-th row of output:

y[i][j] = x_{k}[i][j], j = 0,1, ... , (x_{1}.width - 1)

76
where y is the output tensor. `x_{k}` is the k-th input tensor
Y
Yibing Liu 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
and `k = x{0}[i] + 1`.

)DOC");
  }
};

class MultiplexGradOp : public framework::OperatorWithKernel {
 public:
  MultiplexGradOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
93 94 95 96
    PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(),
                   "Input(X) should not be null");
    PADDLE_ENFORCE(!ctx.MultiOutputVar(framework::GradVarName("X")).empty(),
                   "Output(X@Grad) should not be null");
Y
Yibing Liu 已提交
97 98
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) shouldn't be null.");
99
    auto d_ins = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));
Y
Yibing Liu 已提交
100
    auto ins = ctx.MultiInput<Tensor>("X");
101 102 103 104 105
    // don;t compute gradient for index
    for (size_t i = 1; i < ins.size(); i++) {
      if (d_ins[i]) {
        d_ins[i]->Resize(ins[i]->dims());
      }
Y
Yibing Liu 已提交
106 107 108 109 110 111 112 113 114 115 116 117
    }
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, multiplex_grad,
            ops::MultiplexGradOp);
REGISTER_OP_CPU_KERNEL(multiplex, ops::MultiplexCPUKernel<float>);
REGISTER_OP_CPU_KERNEL(multiplex_grad, ops::MultiplexGradCPUKernel<float>);