dataset.py 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
from .. import framework
18 19
import paddle.dataset.common

20
__all__ = ["Dataset", "IterableDataset", "TensorDataset"]
21 22 23 24


class Dataset(object):
    """
25
    An abstract class to encapsulate methods and behaviors of datasets.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

    All datasets in map-style(dataset samples can be get by a given key)
    should be a subclass of `paddle.io.Dataset`. All subclasses should
    implement following methods:

    :code:`__getitem__`: get sample from dataset with a given index. This
    method is required by reading dataset sample in :code:`paddle.io.DataLoader`.

    :code:`__len__`: return dataset sample number. This method is required
    by some implements of :code:`paddle.io.BatchSampler`

    see :code:`paddle.io.DataLoader`.

    Examples:
        
        .. code-block:: python

            import numpy as np
            from paddle.io import Dataset
            
            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
            
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
                
                def __len__(self):
                    return self.num_samples
            
            dataset = RandomDataset(10)
            for i in range(len(dataset)):
                print(dataset[i])

    """

    def __init__(self):
        pass

    def __getitem__(self, idx):
        raise NotImplementedError("'{}' not implement in class "\
                "{}".format('__getitem__', self.__class__.__name__))

    def __len__(self):
        raise NotImplementedError("'{}' not implement in class "\
                "{}".format('__len__', self.__class__.__name__))
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225


class IterableDataset(Dataset):
    """
    An abstract class to encapsulate methods and behaviors of iterable datasets.

    All datasets in iterable-style (can only get sample one by one sequentially, like
    a Python iterator) should be a subclass of `paddle.io.IterableDataset`. All subclasses should
    implement following methods:

    :code:`__iter__`: yield sample sequentially. This method is required by reading dataset sample in :code:`paddle.io.DataLoader`.

    .. note::
        do not implement :code:`__getitem__` and :code:`__len__` in IterableDataset, should not be called either.

    see :code:`paddle.io.DataLoader`.

    Examples:
        
        .. code-block:: python

            import numpy as np
            from paddle.io import Dataset
            
            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
            
                def __iter__(self):
                    for i in range(self.num_samples):
                        image = np.random.random([784]).astype('float32')
                        label = np.random.randint(0, 9, (1, )).astype('int64')
                        yield image, label
            
            dataset = RandomDataset(10)
            for img, lbl in dataset:
                print(img, lbl)

    When :attr:`num_workers > 0`, each worker has a different copy of the dataset object and
    will yield whole dataset samples, which means samples in dataset will be repeated in
    :attr:`num_workers` times. If it is required for each sample to yield only once, there
    are two methods to configure different copy in each worker process to avoid duplicate data
    among workers as follows. In both the methods, worker information that can be getted in
    a worker process by `paddle.io.get_worker_info` will be needed.

    Example 1: splitting data copy in each worker in :code:`__iter__`

        .. code-block:: python

            import math
            import numpy as np
            import paddle.fluid as fluid
            from paddle.io import IterableDataset, DataLoader, get_worker_info

            class SplitedIterableDataset(IterableDataset):
                def __init__(self, start, end):
                    self.start = start
                    self.end = end

                def __iter__(self):
                    worker_info = get_worker_info()
                    if worker_info is None:
                        iter_start = self.start
                        iter_end = self.end
                    else:
                        per_worker = int(
                            math.ceil((self.end - self.start) / float(
                                worker_info.num_workers)))
                        worker_id = worker_info.id
                        iter_start = self.start + worker_id * per_worker
                        iter_end = min(iter_start + per_worker, self.end)

                    for i in range(iter_start, iter_end):
                        yield np.array([i])

            place = fluid.CPUPlace()
            with fluid.dygraph.guard(place):
                dataset = SplitedIterableDataset(start=2, end=9)
                dataloader = DataLoader(
                    dataset,
                    places=place,
                    num_workers=2,
                    batch_size=1,
                    drop_last=True)

                print(list(dataloader))
                # outputs: [2, 5, 3, 6, 4, 7]

    Example 2: splitting data copy in each worker by :code:`worker_init_fn`

        .. code-block:: python

            import math
            import numpy as np
            import paddle.fluid as fluid
            from paddle.io import IterableDataset, DataLoader, get_worker_info

            class RangeIterableDataset(IterableDataset):
                def __init__(self, start, end):
                    self.start = start
                    self.end = end

                def __iter__(self):
                    for i in range(self.start, self.end):
                        yield np.array([i])

            place = fluid.CPUPlace()
            with fluid.dygraph.guard(place):
                dataset = RangeIterableDataset(start=2, end=9)

                def worker_init_fn(worker_id):
                    worker_info = get_worker_info()

                    dataset = worker_info.dataset
                    start = dataset.start
                    end = dataset.end
                    num_per_worker = int(
                        math.ceil((end - start) / float(worker_info.num_workers)))

                    worker_id = worker_info.id
                    dataset.start = start + worker_id * num_per_worker
                    dataset.end = min(dataset.start + num_per_worker, end)

                dataloader = DataLoader(
                    dataset,
                    places=place,
                    num_workers=2,
                    batch_size=1,
                    drop_last=True,
                    worker_init_fn=worker_init_fn)

                print(list(dataloader))
                # outputs: [2, 5, 3, 6, 4, 7]

    """

    def __init__(self):
        pass

    def __iter__(self):
        raise NotImplementedError("'{}' not implement in class "\
                "{}".format('__iter__', self.__class__.__name__))

    def __getitem__(self, idx):
        raise RuntimeError("'{}' should not be called for IterableDataset" \
                "{}".format('__getitem__', self.__class__.__name__))

    def __len__(self):
        raise RuntimeError("'{}' should not be called for IterableDataset" \
                "{}".format('__len__', self.__class__.__name__))
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277


class TensorDataset(Dataset):
    """
    Dataset defined by a list of tensors.

    Each tensor should be in shape of [N, ...], while N is the sample number,
    and ecah tensor contains a field of sample, :code:`TensorDataset` retrieve
    each sample by indexing tensors in the 1st dimension.

    Args:
        tensors(list of Tensor): tensors with same shape in the 1st dimension.

    Returns:
        Dataset: a Dataset instance wrapping tensors.

    Examples:

        .. code-block:: python
        
            import numpy as np
            import paddle
            from paddle.io import TensorDataset

            paddle.disable_static()

            input_np = np.random.random([2, 3, 4]).astype('float32')
            input = paddle.to_tensor(input_np)
            label_np = np.random.random([2, 1]).astype('int32')
            label = paddle.to_tensor(label_np)

            dataset = TensorDataset([input, label])

            for i in range(len(dataset)):
                input, label = dataset[i]
                print(input, label)

    """

    def __init__(self, tensors):
        if not framework.in_dygraph_mode():
            raise RuntimeError(
                "TensorDataset con only be used in imperative mode")
        assert all([tensor.shape[0] == tensors[0].shape[0] for tensor in tensors]), \
                "tensors not have same shape of the 1st dimension"
        self.tensors = tensors

    def __getitem__(self, index):
        return tuple(tensor[index] for tensor in self.tensors)

    def __len__(self):
        return self.tensors[0].shape[0]