fleet_base.py 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16 17
import paddle
from .strategy_compiler import StrategyCompiler
18
from .distributed_strategy import DistributedStrategy
19 20 21
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
from .util_factory import UtilFactory
22
from paddle.fluid.wrapped_decorator import wrap_decorator
23

24 25 26
__all__ = ['Fleet']


27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)


42 43 44 45 46 47 48 49 50 51 52 53
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
    Please reference the https://github.com/PaddlePaddle/Fleet for details


    Returns:
        Fleet: A Fleet instance

    Examples:
        .. code-block:: python

54 55
            import paddle.distributed.fleet as fleet
            role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
            fleet.init(role)
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
            if fleet.is_first_worker():
                print("this is first worker")
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
    """

    def __init__(self):
        self._runtime_handle = None
        self._util = None

    def init(self, role_maker):
        self._role_maker = role_maker
        self.strategy_compiler = StrategyCompiler()
81
        return None
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
        
        """
        return self._role_maker.is_first_worker()

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
        """
        return self._role_maker.worker_index()

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
        """
        return self._role_maker.worker_num()

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
        """
        return self._role_maker.is_worker()

    def worker_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """
        '''
        if to_string:
            return ",".join(self._role_maker.get_trainer_endpoints())
        else:
            return self._role_maker.get_trainer_endpoints()
        '''
        return ["127.0.0.1:1001", "127.0.0.1:1002"]

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
        """
        return len(self._role_maker.get_pserver_endpoints())

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
        """
        return self._role_maker.server_index()

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """
        '''
        if to_string:
            return ",".join(self._role_maker.get_pserver_endpoints())
        else:
            return self._role_maker.get_pserver_endpoints()
        '''
        return ["127.0.0.1:1001", "127.0.0.1:1002"]

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
        """
        return self._role_maker.is_server()

    @property
    def util(self):
        """
        Utility functions that can be used under certain runtime
        return util
        """
        return self._util

    @util.setter
    def util(self, util):
        """
        Set Utility functions for userd-defined runtime
        set util
        """
        self._util = util

    def barrier_worker(self):
        """
        barrier between workers
        """
        self._role_maker.barrier_worker()

202
    @inited_runtime_handler
203 204 205 206 207 208
    def init_worker(self):
        """
        init worker
        """
        self._runtime_handle._init_worker()

209
    @inited_runtime_handler
210
    def init_server(self, *args, **kwargs):
211 212 213
        """
        init server
        """
214
        self._runtime_handle._init_server(*args, **kwargs)
215

216
    @inited_runtime_handler
217 218 219 220 221 222
    def run_server(self):
        """
        run server
        """
        self._runtime_handle._run_server()

223
    @inited_runtime_handler
224 225 226 227 228 229
    def stop_worker(self):
        """
        stop worker
        """
        self._runtime_handle._stop_worker()

230 231 232 233 234 235 236 237 238 239 240 241 242 243
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
                             export_for_deployment=True):
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
            export_for_deployment)

    def save_persistables(self, executor, dirname, main_program=None):
        self._runtime_handle._save_persistables(executor, dirname, main_program)

244
    def distributed_optimizer(self, optimizer, strategy=None):
245 246 247 248 249 250 251
        """
        distirbuted_optimizer
        Returns:
            Fleet instance with minimize interface like optimizers

        Examples:
            .. code-block:: python
252 253
            import paddle.distributed.fleet as fleet
            role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
254 255 256 257 258 259
            fleet.init(role)
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        """
        self.user_defined_optimizer = optimizer
260 261
        if strategy == None:
            strategy = DistributedStrategy()
262
        self.user_defined_strategy = strategy
D
Dong Daxiang 已提交
263
        self.valid_strategy = None
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        return self

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            import paddle
295
            import paddle.distributed.fleet as fleet
296 297 298 299 300 301 302

            fc_1 = paddle.layers.fc(input=input_x, size=hid_dim, act='tanh')
            fc_2 = paddlen.layers.fc(input=fc_1, size=hid_dim, act='tanh')
            prediction = paddle.layers.fc(input=[fc_2], size=label_dim, act='softmax')
            cost = paddle.layers.cross_entropy(input=prediction, label=input_y)
            avg_cost = paddle.layers.mean(x=cost)

303
            role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
304 305 306 307 308 309 310 311 312
            fleet.init(role)
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
            optimizer.minimize(avg_cost)

            # for more examples, please reference https://github.com/PaddlePaddle/Fleet

        """
313
        context = {}
314 315
        # cache original feed forward program
        self.origin_main_program = loss.block.program
316 317
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
318 319
        if startup_program == None:
            self.origin_startup_program = \
320 321
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
322 323 324
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
325

326 327
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
328 329 330 331 332

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
333

334 335
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
336
        can_not_apply_optimizer_list = []
337 338 339 340 341 342 343
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
                                self.user_defined_strategy)
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
344
            elif opt._can_apply() and opt._is_graph_out():
345
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
346 347
            else:
                can_not_apply_optimizer_list.append(opt)
348
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
349
        meta_optimizer, graph_optimizer = \
350 351 352 353
                self.strategy_compiler.generate_optimizer(
                    loss, self._role_maker, self.user_defined_optimizer,
                    self.user_defined_strategy, valid_optimizer_list,
                    valid_graph_optimizer_list)
D
Dong Daxiang 已提交
354

D
Dong Daxiang 已提交
355 356
        valid_strategy = self.strategy_compiler._get_valid_strategy(
            self.user_defined_strategy, can_not_apply_optimizer_list)
357 358 359

        context["valid_strategy"] = valid_strategy

D
Dong Daxiang 已提交
360 361
        self.valid_strategy = valid_strategy

362 363
        optimize_ops = []
        params_grads = []
364

365 366 367 368 369 370
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
371

372
            default_program = paddle.static.default_main_program()
373 374 375 376

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

377 378 379 380 381 382
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
383

384 385
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
386

387
        if graph_optimizer:
D
Dong Daxiang 已提交
388
            optimize_ops, params_grads = graph_optimizer.minimize(
389 390 391 392 393 394 395 396
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
397 398 399
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

400
        if self._runtime_handle is None:
401
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
402 403

        if self._util is None:
404
            self._util = UtilFactory()._create_util(context)
405 406

        return optimize_ops, params_grads