test_while_op.py 4.8 KB
Newer Older
C
chengduoZH 已提交
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yang Yang(Tony) 已提交
17
import unittest
18 19 20
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor
import paddle.fluid.core as core
21
import paddle.fluid as fluid
22
from paddle.fluid.backward import append_backward
Y
Yang Yang(Tony) 已提交
23 24 25 26
import numpy


class TestWhileOp(unittest.TestCase):
27
    def simple_net(self):
Y
Yang Yang(Tony) 已提交
28
        d0 = layers.data(
F
fengjiayi 已提交
29
            "d0", shape=[10], append_batch_size=False, dtype='float32')
Y
Yang Yang(Tony) 已提交
30
        d1 = layers.data(
F
fengjiayi 已提交
31
            "d1", shape=[10], append_batch_size=False, dtype='float32')
Y
Yang Yang(Tony) 已提交
32
        d2 = layers.data(
F
fengjiayi 已提交
33
            "d2", shape=[10], append_batch_size=False, dtype='float32')
Y
Yang Yang(Tony) 已提交
34 35 36
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
        init = layers.zeros(shape=[10], dtype='float32')
Y
Yang Yang(Tony) 已提交
37
        mem_array = layers.array_write(x=init, i=i)
Y
Yang Yang(Tony) 已提交
38 39 40 41 42 43 44
        data_array = layers.array_write(x=d0, i=i)
        i = layers.increment(i)
        layers.array_write(d1, i, array=data_array)
        i = layers.increment(i)
        layers.array_write(d2, i, array=data_array)
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
C
chengduoZH 已提交
45
        array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
Y
Yang Yang(Tony) 已提交
46
        array_len.stop_gradient = True
Y
Yang Yang(Tony) 已提交
47
        cond = layers.less_than(x=i, y=array_len)
C
chengduoZH 已提交
48 49 50 51 52
        j = layers.fill_constant(shape=[1], dtype='int64', value=1)
        j.stop_gradient = True
        array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
        array_len2.stop_gradient = True
        cond2 = layers.less_than(x=j, y=array_len2)
Y
Yang Yang(Tony) 已提交
53
        while_op = layers.While(cond=cond)
C
chengduoZH 已提交
54
        while_op2 = layers.While(cond=cond2)
Y
Yang Yang(Tony) 已提交
55 56 57 58
        with while_op.block():
            d = layers.array_read(array=data_array, i=i)
            prev = layers.array_read(array=mem_array, i=i)
            result = layers.sums(input=[d, prev])
Y
Yang Yang(Tony) 已提交
59 60

            i = layers.increment(x=i, in_place=True)
Y
Yang Yang(Tony) 已提交
61 62
            layers.array_write(result, i=i, array=mem_array)
            layers.less_than(x=i, y=array_len, cond=cond)
Y
Yang Yang(Tony) 已提交
63

C
chengduoZH 已提交
64 65 66 67 68 69 70 71 72
            with while_op2.block():
                d2 = layers.array_read(array=data_array, i=j)
                prev2 = layers.array_read(array=mem_array, i=j)
                result2 = layers.sums(input=[d2, prev2])

                j = layers.increment(x=j, in_place=True)
                layers.array_write(result2, i=j, array=mem_array)
                layers.less_than(x=j, y=array_len2, cond=cond2)
        sum_result = layers.array_read(array=mem_array, i=j)
Y
Yu Yang 已提交
73
        loss = layers.mean(sum_result)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        return loss, sum_result

    def test_simple_net(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            loss, sum_result = self.simple_net()

            append_backward(loss)

            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []

            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))

            outs = exe.run(feed={'d0': d[0],
                                 'd1': d[1],
                                 'd2': d[2]},
                           fetch_list=[sum_result])
            self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
Y
Yang Yang(Tony) 已提交
96

97 98 99 100 101 102
    def test_simple_net_forward(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            self.simple_net()
            binary = fluid.compiler.CompiledProgram(main_program)
Y
Yang Yang(Tony) 已提交
103

104 105 106
            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []
Y
Yang Yang(Tony) 已提交
107

108 109
            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))
Y
Yang Yang(Tony) 已提交
110

111 112
            for _ in range(2):
                exe.run(binary, feed={'d0': d[0], 'd1': d[1], 'd2': d[2]})
Y
Yang Yang(Tony) 已提交
113

114 115 116 117 118 119 120 121 122 123
    def test_exceptions(self):
        i = layers.zeros(shape=[2], dtype='int64')
        array_len = layers.fill_constant(shape=[2], dtype='int64', value=1)
        cond = layers.less_than(x=i, y=array_len)
        with self.assertRaises(TypeError):
            layers.While(cond=cond)
        cond = layers.cast(cond, dtype='float64')
        with self.assertRaises(TypeError):
            layers.While(cond=cond)

Y
Yang Yang(Tony) 已提交
124 125 126

if __name__ == '__main__':
    unittest.main()