channel.h 11.4 KB
Newer Older
J
jiaqi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

#include <glog/logging.h>
#include <algorithm>
#include <condition_variable>  // NOLINT
#include <deque>
#include <limits>
#include <memory>
#include <mutex>  // NOLINT
#include <utility>
#include <vector>
#include "paddle/fluid/framework/expect.h"

namespace paddle {
namespace framework {

template <class T>
class ChannelObject {
 public:
  ChannelObject() {}

  // capacity can be zero
  explicit ChannelObject(size_t capacity) {
43
    capacity_ = (std::min)(MaxCapacity(), capacity);
J
jiaqi 已提交
44 45
  }

H
hutuxian 已提交
46
  const std::deque<T>& GetData() const { return data_; }
J
jiaqi 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  void Clear() {
    std::unique_lock<std::mutex> lock(mutex_);
    data_.clear();
    data_.shrink_to_fit();
  }

  size_t Capacity() {
    return capacity_;  // atomic
  }

  void SetCapacity(size_t x) {  // capacity can be zero
    std::lock_guard<std::mutex> lock(mutex_);
    capacity_ = std::min(MaxCapacity(), x);
    Notify();
  }

  size_t BlockSize() {
    return block_size_;  // atomic
  }

  void SetBlockSize(size_t x) {
    CHECK(x >= 1) << "block size must be >= 1";
    std::lock_guard<std::mutex> lock(mutex_);
    block_size_ = x;
  }

  template <class U>
  void InheritFrom(const std::shared_ptr<ChannelObject<U>>& other) {
    std::lock_guard<std::mutex> lock(mutex_);
    capacity_ = other->Capacity();
    block_size_ = other->BlockSize();
  }

  bool Closed() {
    return closed_;  // atomic
  }

  // open channel, then data can be write() to channel
  void Open() {
    std::lock_guard<std::mutex> lock(mutex_);
    closed_ = false;
    Notify();
  }

  // close channel, then no more data can be write() to channel
  void Close() {
    std::lock_guard<std::mutex> lock(mutex_);
    closed_ = true;
    Notify();
  }

  size_t Size() {
    std::lock_guard<std::mutex> lock(mutex_);
    return data_.size();
  }

  bool Empty() {
    std::lock_guard<std::mutex> lock(mutex_);
    return EmptyUnlocked();
  }

  // blocking operation
  bool Get(T& val) { return Read(1, &val) != 0; }  // NOLINT

  // blocking operation
  // returns 0 if the channel is closed and empty
  size_t Read(size_t n, T* p) {
    if (n == 0) {
      return 0;
    }

    std::unique_lock<std::mutex> lock(mutex_);
    size_t finished = Read(n, p, lock);
    Notify();
    return finished;
  }

  // blocking operation
  bool Put(T&& val) { return WriteMove(1, &val) != 0; }

  // blocking operation
  bool Put(const T& val) { return Write(1, &val) != 0; }

  // blocking operation
  // returns value less than n if the channel is closed
  size_t Write(size_t n, const T* p) {
    if (n == 0) {
      return 0;
    }
    std::unique_lock<std::mutex> lock(mutex_);
    size_t finished = Write(n, p, lock);
    Notify();
    return finished;
  }

  // WriteMove() will clear original contents of input array
  size_t WriteMove(size_t n, T* p) {
    if (n == 0) {
      return 0;
    }
    std::unique_lock<std::mutex> lock(mutex_);
    size_t finished = WriteMove(n, p, lock);
    Notify();
    return finished;
  }

  // read data of block size from channel to vector
  size_t Read(std::vector<T>& p) {  // NOLINT
    p.resize(block_size_);
    size_t finished = Read(p.size(), &p[0]);
    p.resize(finished);
    return finished;
  }

  size_t ReadAll(std::vector<T>& p) {  // NOLINT
    p.clear();
    size_t finished = 0;
    size_t n = 0;
    do {
      // _block_size may change anytime
      n = block_size_;
      p.resize(finished + n);
      n = Read(n, &p[finished]);
      finished += n;
    } while (n != 0);
    p.resize(finished);
    return finished;
  }

  // write data from vector to channel
  size_t Write(const std::vector<T>& p) { return Write(p.size(), &p[0]); }

  // write data from vector to channel
  size_t Write(std::vector<T>&& p) { return WriteMove(p.size(), &p[0]); }

 private:
  size_t capacity_ = MaxCapacity();
  size_t block_size_ = 1024;
  bool closed_ = false;
  std::mutex mutex_;
  // use deque to store data
  std::deque<T> data_;
  size_t reading_count_ = 0;
  int empty_waiters_ = 0;
  int full_waiters_ = 0;
  std::condition_variable empty_cond_;
  std::condition_variable full_cond_;

  static constexpr size_t MaxCapacity() {
196
    return (std::numeric_limits<size_t>::max)() / 2;
J
jiaqi 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  }

  void Notify() {
    if (empty_waiters_ != 0 && (!EmptyUnlocked() || closed_)) {
      empty_cond_.notify_one();
    }
    if (full_waiters_ != 0 && (!FullUnlocked() || closed_)) {
      full_cond_.notify_one();
    }
  }

  bool EmptyUnlocked() { return data_.empty(); }

  bool FullUnlocked() { return data_.size() >= capacity_ + reading_count_; }

  bool WaitForRead(std::unique_lock<std::mutex>& lock) {  // NOLINT
#ifdef _LINUX
    while (unlikely(EmptyUnlocked() && !closed_)) {
#else
    while (EmptyUnlocked() && !closed_) {
#endif
      if (full_waiters_ != 0) {
        full_cond_.notify_one();
      }
      empty_waiters_++;
      empty_cond_.wait(lock);
      empty_waiters_--;
    }
    return !EmptyUnlocked();
  }

  bool WaitForWrite(std::unique_lock<std::mutex>& lock) {  // NOLINT
#ifdef _LINUX
    while (unlikely(FullUnlocked() && !closed_)) {
#else
    while (FullUnlocked() && !closed_) {
#endif
      if (empty_waiters_ != 0) {
        empty_cond_.notify_one();
      }
      full_waiters_++;
      full_cond_.wait(lock);
      full_waiters_--;
    }
    return !closed_;
  }

  size_t Read(size_t n, T* p, std::unique_lock<std::mutex>& lock) {  // NOLINT
    size_t finished = 0;
    CHECK(n <= MaxCapacity() - reading_count_);
    reading_count_ += n;
    while (finished < n && WaitForRead(lock)) {
      size_t m = std::min(n - finished, data_.size());
      for (size_t i = 0; i < m; i++) {
        p[finished++] = std::move(data_.front());
        data_.pop_front();
      }
      reading_count_ -= m;
    }
    reading_count_ -= n - finished;
    return finished;
  }

  size_t Write(size_t n,
               const T* p,                            // NOLINT
               std::unique_lock<std::mutex>& lock) {  // NOLINT
    size_t finished = 0;
    while (finished < n && WaitForWrite(lock)) {
      size_t m =
          std::min(n - finished, capacity_ + reading_count_ - data_.size());
      for (size_t i = 0; i < m; i++) {
        data_.push_back(p[finished++]);
      }
    }
    return finished;
  }

  size_t WriteMove(size_t n,
                   T* p,                                  // NOLINT
                   std::unique_lock<std::mutex>& lock) {  // NOLINT
    size_t finished = 0;
    while (finished < n && WaitForWrite(lock)) {
      size_t m =
W
wanghuancoder 已提交
280
          (std::min)(n - finished, capacity_ + reading_count_ - data_.size());
J
jiaqi 已提交
281 282 283 284 285 286 287 288 289 290 291 292
      for (size_t i = 0; i < m; i++) {
        data_.push_back(std::move(p[finished++]));
      }
    }
    return finished;
  }
};  // NOLINT

template <class T>
using Channel = std::shared_ptr<ChannelObject<T>>;

template <class T>
293
Channel<T> MakeChannel(size_t capacity = (std::numeric_limits<size_t>::max)()) {
J
jiaqi 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  return std::make_shared<ChannelObject<T>>(capacity);
}

template <class T, class U>
Channel<T> MakeChannel(const Channel<U>& other) {
  CHECK(other != nullptr) << "channel can not be NULL";
  Channel<T> chan = std::make_shared<ChannelObject<T>>();
  chan->InheritFrom(other);
  return chan;
}

// NOTE: ChannelReader is a wrapper for quick read channel with a buffer. It
// will read a block data from channel, but user can get data one by one. So it
// is important to notice that user must call operator>> until false, or call
// get_buffer_remain until false to make sure the buffered data all readed.
template <class T>
class ChannelReader {
 public:
  explicit ChannelReader(ChannelObject<T>* channel = nullptr) {
    Reset(channel);
  }

  ~ChannelReader() { CHECK(cursor_ == 0) << "Forgot to read buffer data"; }

  ChannelObject<T>* channel() { return channel_; }

  void Reset(ChannelObject<T>* channel) {
    CHECK(channel != nullptr) << "Channel can not be nullptr";
    channel_ = channel;
    cursor_ = 0;
    failed_ = !channel;
  }

  // whether there were read failed
  operator bool() { return !failed_; }

  ChannelReader<T>& operator>>(T& val) {
    if (failed_) {
      return *this;
    }
    if (cursor_ >= buffer_.size()) {
      cursor_ = 0;
      if (channel_->read(buffer_) == 0) {
        failed_ = true;
        return *this;
      }
    }
    val = std::move(buffer_[cursor_++]);
    return *this;
  }

  bool GetBufferRemain(T& val) {  // NOLINT
    if (cursor_ >= buffer_.size()) {
      cursor_ = 0;
      return false;
    }
    val = std::move(buffer_[cursor_++]);
    return true;
  }

 private:
  ChannelObject<T>* channel_ = nullptr;
  std::vector<T> buffer_;
  size_t cursor_ = 0;
  bool failed_ = true;
};  // NOLINT

template <class T>
class ChannelWriter {
 public:
  explicit ChannelWriter(ChannelObject<T>* channel = nullptr) {
    Reset(channel);
  }

  ~ChannelWriter() { CHECK(buffer_.empty()) << "Forgot to flush"; }

  ChannelObject<T>* channel() { return channel_; }

  void Reset(ChannelObject<T>* channel) {
    CHECK(buffer_.empty()) << "Forgot to flush";
374
    //    CHECK(channel != nullptr) << "Channel can not be nullptr";
J
jiaqi 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    channel_ = channel;
    buffer_.clear();
    failed_ = !channel;
  }

  // whether there were write failed
  operator bool() { return !failed_; }

  ChannelWriter<T>& operator<<(T&& val) {
    if (failed_) {
      return *this;
    }
    buffer_.push_back(std::move(val));
    if (buffer_.size() >= channel_->BlockSize()) {
      Flush();
    }
    return *this;
  }

  ChannelWriter<T>& operator<<(const T& val) {
    if (failed_) {
      return *this;
    }
    buffer_.push_back(val);
    if (buffer_.size() >= channel_->BlockSize()) {
      Flush();
    }
    return *this;
  }

  void Flush() {
    if (failed_ || buffer_.empty()) {
      buffer_.clear();
      return;
    }
    failed_ |=
        channel_->WriteMove(buffer_.size(), &buffer_[0]) != buffer_.size();
    buffer_.clear();
  }

 private:
  ChannelObject<T>* channel_ = nullptr;
  std::vector<T> buffer_;
  bool failed_ = true;
};  // NOLINT

// only used for range-for loop
// for (auto& x : chan) {...}
template <class T>
struct ChannelIterator {
  std::shared_ptr<ChannelReader<T>> reader_;
  T data_;

  void operator++() {
    CHECK(reader_ != nullptr) << "reader can not be NULL";
    if (!(*reader_ >> data_)) {
      reader_ = nullptr;
    }
  }

  T& operator*() { return data_; }

  friend bool operator==(const ChannelIterator<T>& a,
                         const ChannelIterator<T>& b) {
    return a.reader_ == b.reader_;
  }

  friend bool operator!=(const ChannelIterator<T>& a,
                         const ChannelIterator<T>& b) {
    return a.reader_ != b.reader_;
  }
};  // NOLINT

template <class T>
ChannelIterator<T> begin(ChannelObject<T>* chan) {
  ChannelIterator<T> it{std::make_shared<ChannelReader<T>>(chan), T()};
  ++it;
  return it;
}

template <class T>
ChannelIterator<T> end(ChannelObject<T>* chan) {
  return {nullptr, T()};
}

}  // namespace framework
}  // namespace paddle