top_k_op.h 3.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <iostream>
18 19
#include <utility>
#include <vector>
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
武毅 已提交
22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

32 33 34 35
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
36
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
37
class TopkKernel : public framework::OpKernel<T> {
武毅 已提交
38 39 40
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    // Get the top k elements of each row of input tensor
Q
qingqing01 已提交
41 42 43
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    auto* indices = ctx.Output<Tensor>("Indices");
W
whs 已提交
44 45 46 47 48 49 50 51 52 53

    size_t k = static_cast<int>(ctx.Attr<int>("k"));
    auto* k_t = ctx.Input<Tensor>("K");
    if (k_t) {
      k = k_t->data<int>()[0];
      framework::DDim output_dims = output->dims();
      output_dims[output_dims.size() - 1] = k;
      output->Resize(output_dims);
      indices->Resize(output_dims);
    }
武毅 已提交
54 55

    T* output_data = output->mutable_data<T>(ctx.GetPlace());
F
fengjiayi 已提交
56
    int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
武毅 已提交
57 58 59 60 61 62 63

    // reshape input to a flattern matrix(like flat_inner_dims)
    framework::DDim inputdims = input->dims();
    const size_t row = framework::product(
        framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
    const size_t col = inputdims[inputdims.size() - 1];
    Eigen::DSizes<int, 2> flat2dims(row, col);
64
// NOTE: eigen shape doesn't affect paddle tensor.
M
mozga-intel 已提交
65
#ifdef PADDLE_WITH_MKLML
M
mozga-intel 已提交
66 67
#pragma omp parallel for
#endif
武毅 已提交
68 69
    for (size_t i = 0; i < row; i++) {
      std::vector<std::pair<T, size_t>> vec;
70
      vec.reserve(col);
71 72 73 74 75 76 77 78 79 80 81
      // 1D vector
      if (inputdims.size() == 1) {
        auto eg_input = EigenVector<T>::Flatten(*input);
        for (size_t j = 0; j < col; j++) {
          vec.push_back(std::pair<T, size_t>(eg_input(j), j));
        }
      } else {
        auto eg_input = EigenMatrix<T>::Reshape(*input, inputdims.size() - 1);
        for (size_t j = 0; j < col; j++) {
          vec.push_back(std::pair<T, size_t>(eg_input(i, j), j));
        }
武毅 已提交
82 83 84 85 86 87 88 89 90
      }

      std::partial_sort(
          vec.begin(), vec.begin() + k, vec.end(),
          [](const std::pair<T, size_t>& l, const std::pair<T, size_t>& r) {
            return l.first > r.first;
          });
      for (size_t j = 0; j < k; j++) {
        output_data[i * k + j] = vec[j].first;
F
fengjiayi 已提交
91
        indices_data[i * k + j] = int64_t(vec[j].second);
武毅 已提交
92 93 94 95 96 97 98
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle