temporal_shift_op.h 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

D
dengkaipeng 已提交
21 22 23 24
static HOSTDEVICE inline int GetEntryIndex(int in, int it, int ic, int ih,
                                           int iw, const int tchw,
                                           const int chw, const int hw,
                                           const int w) {
25 26 27 28
  return in * tchw + it * chw + ic * hw + ih * w + iw;
}

template <typename T>
D
dengkaipeng 已提交
29
class TemporalShiftKernel : public framework::OpKernel<T> {
30 31 32 33 34
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    int t = ctx.Attr<int>("seg_num");
D
dengkaipeng 已提交
35
    float shift_ratio = ctx.Attr<float>("shift_ratio");
36 37 38 39 40 41

    const int nt = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];

D
dengkaipeng 已提交
42 43 44
    const int c1 = static_cast<int>(c * shift_ratio);
    const int c2 = static_cast<int>(c * 2 * shift_ratio);

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    const int hw = h * w;
    const int chw = c * hw;
    const int tchw = t * chw;

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>({nt, c, h, w}, ctx.GetPlace());

    int src_it = 0;
    for (int i = 0; i < output->numel(); i++) {
      int in = i / tchw;
      int it = (i % tchw) / chw;
      int ic = (i % chw) / hw;
      int ih = (i % hw) / w;
      int iw = i % w;

D
dengkaipeng 已提交
60
      if (ic < c1) {
61
        src_it = it - 1;
D
dengkaipeng 已提交
62
      } else if (ic < c2) {
63 64 65 66
        src_it = it + 1;
      } else {
        src_it = it;
      }
D
dengkaipeng 已提交
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
      if (src_it < 0 || src_it >= t) {
        output_data[i] = 0;
      } else {
        int src_idx = GetEntryIndex(in, src_it, ic, ih, iw, tchw, chw, hw, w);
        output_data[i] = input_data[src_idx];
      }
    }
  }
};

template <typename T>
class TemporalShiftGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    int t = ctx.Attr<int>("seg_num");
D
dengkaipeng 已提交
85
    float shift_ratio = ctx.Attr<float>("shift_ratio");
86 87 88 89 90 91

    const int nt = output_grad->dims()[0];
    const int c = output_grad->dims()[1];
    const int h = output_grad->dims()[2];
    const int w = output_grad->dims()[3];

D
dengkaipeng 已提交
92 93 94
    const int c1 = static_cast<int>(c * shift_ratio);
    const int c2 = static_cast<int>(c * 2 * shift_ratio);

95 96 97 98 99
    const int hw = h * w;
    const int chw = c * hw;
    const int tchw = t * chw;

    const T* output_grad_data = output_grad->data<T>();
D
dengkaipeng 已提交
100 101
    T* input_grad_data =
        input_grad->mutable_data<T>({nt, c, h, w}, ctx.GetPlace());
102
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));
103 104 105 106 107 108 109 110 111

    int src_it = 0;
    for (int i = 0; i < output_grad->numel(); i++) {
      int in = i / tchw;
      int it = (i % tchw) / chw;
      int ic = (i % chw) / hw;
      int ih = (i % hw) / w;
      int iw = i % w;

D
dengkaipeng 已提交
112
      if (ic < c1) {
113
        src_it = it - 1;
D
dengkaipeng 已提交
114
      } else if (ic < c2) {
115 116 117 118
        src_it = it + 1;
      } else {
        src_it = it;
      }
D
dengkaipeng 已提交
119

120 121 122 123 124 125 126 127 128 129
      if (src_it >= 0 && src_it < t) {
        int src_idx = GetEntryIndex(in, src_it, ic, ih, iw, tchw, chw, hw, w);
        input_grad_data[src_idx] = output_grad_data[i];
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle