test_recurrent_op.py 14.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yan Chunwei 已提交
17
import unittest
C
chengduo 已提交
18
import paddle.fluid as fluid
19 20 21 22
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, grad_var_name
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
Y
Yu Yang 已提交
23
import numpy as np
24
import paddle.fluid.core as core
S
fix res  
superjom 已提交
25 26


Y
Yu Yang 已提交
27 28 29 30
class PyRNNBase(object):
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
31

32 33
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
34 35 36

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
37 38
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
39 40 41 42

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN1, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.h_boot = np.random.normal(size=(batch_size,
                                             input_dim)).astype("float32")

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN2, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.W = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.U = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
76 77 78

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
79
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
80 81
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
82 83
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
84

Y
Yu Yang 已提交
85 86
        def py_sigmoid(x):
            return 1. / (1. + np.exp(-x))
S
fix res  
superjom 已提交
87

Y
Yu Yang 已提交
88 89
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
90 91


Y
Yu Yang 已提交
92 93 94
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
95 96 97
    return tensor


Y
Yu Yang 已提交
98
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
99 100 101
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
102
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
103 104 105 106 107
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
108
        - h
Y
Yan Chunwei 已提交
109 110
    '''

Y
Yu Yang 已提交
111 112 113 114
    input_dim = 2
    batch_size = 1
    sent_len = 1

115 116 117
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
118
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
119

S
superjom 已提交
120
    def setUp(self):
121
        self.setup_program()
Y
Yu Yang 已提交
122
        self.data_field = {"x", "h_boot"}
Y
Yan Chunwei 已提交
123

Y
Yu Yang 已提交
124 125 126 127
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

C
chengduo 已提交
128 129
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yan Chunwei 已提交
130 131

    def create_rnn_op(self):
132
        x = layers.data(
Y
Yu Yang 已提交
133
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
134
            dtype='float32',
Y
Yu Yang 已提交
135
            name='x',
C
chengduo 已提交
136
            append_batch_size=False)
Y
Yu Yang 已提交
137
        x.stop_gradient = False
138
        h_boot = layers.data(
C
chengduo 已提交
139
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
140
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
141

C
chengduo 已提交
142
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
143 144 145 146
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

147 148
            h = layers.scale(
                x=layers.elementwise_add(
C
chengduo 已提交
149 150
                    x=h_pre, y=x_t),
                scale=self.py_rnn.scale)
Y
Yu Yang 已提交
151 152 153 154 155 156 157 158 159 160 161 162

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        exe = Executor(self.place)
163
        out = exe.run(self.main_program,
Y
Yu Yang 已提交
164 165 166
                      feed=self.feed_map,
                      fetch_list=[self.output])

D
dzhwinter 已提交
167
        return out[0]
Y
Yu Yang 已提交
168 169 170 171 172 173 174

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        fetch_list = [
Q
qiaolongfei 已提交
175
            self.main_program.global_block().var(grad_var_name(x))
Y
Yu Yang 已提交
176 177 178 179
            for x in self.data_field
        ]

        exe = Executor(self.place)
180 181
        return exe.run(self.main_program,
                       feed=self.feed_map,
D
dzhwinter 已提交
182 183
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yu Yang 已提交
184

C
chengduo 已提交
185
    def test_backward(self, rtol=0.1):
Y
Yu Yang 已提交
186 187
        self.check_forward()

C
chengduo 已提交
188 189
        with fluid.program_guard(self.main_program, self.startup_program):
            append_backward(self.output)
Y
Yu Yang 已提交
190 191 192 193 194 195 196 197

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
        for idx, name in enumerate(self.data_field):
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
            self.assertTrue(
                np.isclose(
C
chengduo 已提交
198 199 200 201
                    num_grad[idx], ana_grad[idx], rtol=rtol).all(),
                "num_grad (" + name + ") has diff at " + str(self.place) +
                "\nExpect " + str(num_grad[idx]) + "\n" + "But Got" +
                str(ana_grad[idx]) + " in class " + self.__class__.__name__)
Y
Yu Yang 已提交
202 203

    def check_forward(self):
S
superjom 已提交
204 205 206
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        self.assertEqual(pd_output.shape, py_output.shape)
S
superjom 已提交
207
        self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
Y
Yan Chunwei 已提交
208

Y
Yu Yang 已提交
209 210 211 212 213 214 215 216 217
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
        feed_list = [getattr(self.py_rnn, x) for x in self.data_field]
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
218

Y
Yu Yang 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
    '''
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
250
        self.setup_program()
Y
Yu Yang 已提交
251 252 253 254 255 256 257

        self.data_field = {"x", "h_boot", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

C
chengduo 已提交
258 259
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
260 261

    def create_rnn_op(self):
262
        x = layers.data(
Y
Yu Yang 已提交
263
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
264
            dtype='float32',
Y
Yu Yang 已提交
265
            name='x',
C
chengduo 已提交
266
            append_batch_size=False)
Y
Yu Yang 已提交
267
        x.stop_gradient = False
268
        h_boot = layers.data(
C
chengduo 已提交
269
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
270
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
271

C
chengduo 已提交
272
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
273 274 275 276
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

277 278
            temp_l = layers.fc(input=x_t,
                               size=self.input_dim,
Y
Yu Yang 已提交
279
                               param_attr='W',
C
chengduo 已提交
280
                               bias_attr=False)
281 282
            temp_r = layers.fc(input=h_pre,
                               size=self.input_dim,
Y
Yu Yang 已提交
283
                               param_attr='U',
C
chengduo 已提交
284
                               bias_attr=False)
285

C
chengduo 已提交
286
            h = layers.sigmoid(x=layers.elementwise_add(x=temp_l, y=temp_r))
Y
Yu Yang 已提交
287 288 289 290 291 292

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

C
chengduo 已提交
293 294 295
    def test_backward(self):
        super(RecurrentOpTest2, self).test_backward(rtol=0.2)

Y
Yu Yang 已提交
296

297
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
314 315
            super(RecurrentOpMultipleMemoryTest.PySimpleRNN3, self).__init__(
                input_shape, output_shape)
Y
Yu Yang 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

            seq_len, batch_size, input_dim = input_shape
            self.h_boot1 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")
            self.h_boot2 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
343
        self.setup_program()
Y
Yu Yang 已提交
344 345 346 347 348

        self.data_field = {"x", "h_boot1", "h_boot2"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
349 350
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
            self.input_shape, self.output_shape)
Y
Yu Yang 已提交
351

C
chengduo 已提交
352 353
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
354 355

    def create_rnn_op(self):
356
        x = layers.data(
Y
Yu Yang 已提交
357
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
358
            dtype='float32',
Y
Yu Yang 已提交
359
            name='x',
C
chengduo 已提交
360
            append_batch_size=False)
Y
Yu Yang 已提交
361
        x.stop_gradient = False
362
        h_boot1 = layers.data(
Y
Yu Yang 已提交
363
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
364
            dtype='float32',
Y
Yu Yang 已提交
365
            name='h_boot1',
C
chengduo 已提交
366
            append_batch_size=False)
Y
Yu Yang 已提交
367
        h_boot1.stop_gradient = False
368
        h_boot2 = layers.data(
Y
Yu Yang 已提交
369
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
370
            dtype='float32',
Y
Yu Yang 已提交
371
            name='h_boot2',
C
chengduo 已提交
372
            append_batch_size=False)
Y
Yu Yang 已提交
373
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
374

C
chengduo 已提交
375
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
376 377 378 379 380
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

C
chengduo 已提交
381 382 383
            mem1 = layers.scale(x=h_pre1, scale=1.0)
            mem2 = layers.scale(x=h_pre2, scale=1.0)
            out = layers.sums(input=[mem1, x_t, mem2])
Y
Yu Yang 已提交
384 385 386 387 388 389

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
390 391


392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpNoMemBootTest.PySimpleRNN4, self).__init__(
                input_shape, output_shape)
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

        self.data_field = {"x"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
                                                            self.output_shape)
C
chengduo 已提交
434 435 436

        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
437 438 439 440

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
441
            dtype='float32',
442
            name='x',
C
chengduo 已提交
443
            append_batch_size=False)
444 445
        x.stop_gradient = False

C
chengduo 已提交
446
        rnn = layers.StaticRNN()
447 448 449
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
C
chengduo 已提交
450
            mem = layers.elementwise_add(x=mem_pre, y=x_t)
451 452 453 454 455 456
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


Y
Yan Chunwei 已提交
457 458
if __name__ == '__main__':
    unittest.main()