executor.py 33.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
import six
23
from .framework import Program, default_main_program, Variable
24
from . import core
25 26
from . import compiler
from .. import compat as cpt
27
from .trainer_factory import TrainerFactory
28

T
Tink_Y 已提交
29
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
30

Y
Yu Yang 已提交
31
g_scope = core.Scope()
F
flame 已提交
32 33
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35

Y
Yang Yu 已提交
36
def global_scope():
Y
yuyang18 已提交
37 38 39 40 41 42 43
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

    Returns:
        Scope: The global/default scope instance.
    """
Y
Yang Yu 已提交
44 45 46
    return g_scope


47
def _switch_scope(scope):
Y
Yang Yu 已提交
48 49 50 51 52 53
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
54
@signature_safe_contextmanager
Y
Yang Yu 已提交
55
def scope_guard(scope):
Y
yuyang18 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
    """
    Change the global/default scope instance by Python `with` statement. All
    variable in runtime will assigned to the new scope.

    Examples:
        >>> import paddle.fluid as fluid
        >>> new_scope = fluid.Scope()
        >>> with fluid.scope_guard(new_scope):
        >>>     ...

    Args:
        scope: The new global/default scope.
    """
69
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
70
    yield
71
    _switch_scope(ex)
Y
Yang Yu 已提交
72 73


D
dzhwinter 已提交
74
def as_numpy(tensor):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
    Examples:
        >>> import paddle.fluid as fluid
        >>> outs = executor.run(...)
        >>> np_outs = map(lambda x: as_numpy(x), outs)
        >>>     ...

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
90 91
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
92 93 94 95
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
96
    if len(lod) > 0:
D
dzhwinter 已提交
97
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
98 99 100 101
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
    return np.array(tensor)
D
dzhwinter 已提交
102 103


104 105 106 107 108 109 110 111 112 113 114 115
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
116 117
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
118 119 120
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
121
        A boolean value that indicates whether a block has feed operators
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
144

145 146 147 148 149 150 151 152 153
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
154 155 156
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
157

X
xuwei06 已提交
158 159 160
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
182
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
183
    """
C
chengduoZH 已提交
184 185 186
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
187
    Args:
188 189 190 191
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
192 193 194 195
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
196 197 198 199 200 201
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
202
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
203

Y
Yibing Liu 已提交
204
    var = scope.find_var(name)
205 206 207 208
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
209 210 211 212 213 214
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
215 216 217 218 219 220 221 222 223
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
224 225


X
polish  
Xin Pan 已提交
226 227 228
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
229 230 231 232

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


Y
Yu Yang 已提交
264
class Executor(object):
265
    """
S
Fix doc  
sneaxiy 已提交
266 267
    An Executor in Python, supports single/multiple-GPU running, and single/multiple-CPU running.
    Python executor takes a program, adds feed operators and fetch operators to this program according
268
    to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides
S
Fix doc  
sneaxiy 已提交
269
    the variables(or names) that user wants to get after program runs. Note: the executor will run all
270
    operators in the program but not only the operators dependent by the fetch_list.
S
Fix doc  
sneaxiy 已提交
271 272 273
    It stores the global variables into the global scope, and creates a local scope for the temporary
    variables. The contents in local scope may be discarded after every minibatch forward/backward
    finished. But the global scope variables will be persistent through different runs.
274

X
add doc  
Xin Pan 已提交
275 276

    Example:
S
Fix doc  
sneaxiy 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

        .. code-block:: python

            # First create the Executor.
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(fluid.default_startup_program())

            # Run the main program directly without compile.
            loss, = exe.run(fluid.default_main_program(),
                            feed=feed_dict,
                            fetch_list=[loss.name])
            # Or, compiled the program and run. See `CompiledProgram` for more detail.
            compiled_prog = compiler.CompiledProgram(
                fluid.default_main_program()).with_data_parallel(
                loss_name=loss.name)
            loss, = exe.run(compiled_prog,
                            feed=feed_dict,
                            fetch_list=[loss.name])
X
add doc  
Xin Pan 已提交
299

300 301 302 303
    Args:
        place(core.CPUPlace|core.CUDAPlace(n)): indicate the executor run on which device
    """

D
dzhwinter 已提交
304 305
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
306
        self.program_caches = dict()
307 308 309
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
310
        self._closed = False
D
dzhwinter 已提交
311

Q
Qiao Longfei 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
344
                global_block._prepend_op(
Q
Qiao Longfei 已提交
345 346 347 348 349 350 351 352
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
353 354 355
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
        for op in program.global_block().ops:
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
371
                    cur_feed = _as_lodtensor(cur_feed, self.place)
Q
Qiao Longfei 已提交
372 373 374 375 376 377 378 379
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
380
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
381 382 383
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
384 385 386 387 388 389
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
390 391 392 393
    def close(self):
        """
        Close this executor.

X
fix  
Xin Pan 已提交
394
        You can no longer use this executor after calling this method.
Y
Yancey1989 已提交
395 396 397 398 399 400 401 402 403
        For the distributed training, this method would free the resource on PServers related to
        the current Trainer.

        Example:
            >>> cpu = core.CPUPlace()
            >>> exe = Executor(cpu)
            >>> ...
            >>> exe.close()
        """
404 405
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
406
            self._closed = True
Y
Yancey1989 已提交
407

X
fix  
Xin Pan 已提交
408
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
X
polish  
Xin Pan 已提交
409
                      return_numpy):
410
        exe = program._executor
411 412 413 414 415 416 417 418 419 420 421
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

422
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
423
        elif isinstance(feed, list) or isinstance(feed, tuple):
X
fix  
Xin Pan 已提交
424
            if len(feed) != len(program._places):
425 426 427 428 429 430 431 432 433 434 435 436 437 438
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
X
fix  
Xin Pan 已提交
439
                        tmp.set(tensor, program._places[i])
440 441 442
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
443
            exe.feed_tensors_into_local_scopes(res)
444

X
polish  
Xin Pan 已提交
445
        fetch_var_names = list(map(_to_name_str, fetch_list))
446
        exe.run(fetch_var_names, fetch_var_name)
447 448 449 450 451 452
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()

        if return_numpy:
            return as_numpy(arr)
        return [arr[i] for i in range(len(arr))]

Z
Zeng Jinle 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    def _check_fetch_vars_persistable(self, program, fetch_list):
        for var in fetch_list:
            if isinstance(var, Variable):
                persistable = var.persistable
            else:
                block_num = program.desc.num_blocks()
                persistable = None
                var_name = cpt.to_bytes(var)
                for i in six.moves.range(block_num):
                    var_desc = program.desc.block(i).find_var(var_name)
                    if var_desc:
                        persistable = var_desc.persistable()
                        break
                assert persistable is not None, "Variable {} is not found".format(
                    var)

            if not persistable:
                logging.warn("""
     Detect that memory optimize or inplace is enabled, but the some variables in the fetch
     list is not persistable, you may get wrong fetched value, or an exeception may be thrown
     about cannot find variable of the fetch list. 

     TO FIX this:
         # Sample
         conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None) 
         # if you need to fetch conv1, then:
         conv1.persistable = True

                 """)

Y
Yu Yang 已提交
483
    def run(self,
Y
Yu Yang 已提交
484
            program=None,
485 486
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
487
            feed_var_name='feed',
Y
Yu Yang 已提交
488
            fetch_var_name='fetch',
D
dzhwinter 已提交
489
            scope=None,
490 491
            return_numpy=True,
            use_program_cache=False):
492 493
        """
        Run program by this Executor. Feed data by feed map, fetch result by fetch_list.
Q
qiaolongfei 已提交
494 495
        Python executor takes a program, add feed operators and fetch operators to this program according
        to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides
496 497 498
        the variables(or names) that user want to get after program run.

        Note: the executor will run all
Q
qiaolongfei 已提交
499 500
        operators in the program but not only the operators dependent by the fetch_list

501
        Args:
X
add doc  
Xin Pan 已提交
502
            program(Program|CompiledProgram): the program that need to run,
X
fix  
Xin Pan 已提交
503
                if not provided, then default_main_program (not compiled) will be used.
X
add doc  
Xin Pan 已提交
504
            feed(dict): feed variable map, e.g. {"image": ImageData, "label": LabelData}
Z
Zeng Jinle 已提交
505 506 507 508 509 510 511 512
            fetch_list(list): a list of variable or variable names that user 
                wants to get, this method will return them according to this list.
            feed_var_name(str): the name for the input variable of 
                feed Operator.
            fetch_var_name(str): the name for the output variable of 
                fetch Operator.
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is global_scope
513
            return_numpy(bool): if convert the fetched tensor to numpy
Z
Zeng Jinle 已提交
514 515 516 517 518 519
            use_program_cache(bool): whether to use the cached program 
                settings across batches. Setting it be true would be faster 
                only when (1) the program is not compiled with data parallel, 
                and (2) program, feed variable names and fetch_list variable 
                names do not changed compared to the last step. 
                
520 521 522 523 524 525 526
        Returns:

            list(numpy.array): fetch result according to fetch_list.


        Examples:

T
Tink_Y 已提交
527 528 529 530 531
            >>> data = fluid.layers.data(name='X', shape=[1], dtype='float32')
            >>> out = fluid.layers.create_tensor(dtype='float32')
            >>> hidden = fluid.layers.fc(input=data, size=10)
            >>> fluid.layers.assign(hidden,out)
            >>> loss = fluid.layers.mean(out)
532
            >>> adam = fluid.optimizer.Adam()
T
Tink_Y 已提交
533
						>>> adam.minimize(loss)
534 535

            >>> cpu = core.CPUPlace()
T
Tink_Y 已提交
536 537
            >>> exe = fluid.Executor(cpu)
            >>> exe.run(fluid.default_startup_program())
538 539 540 541 542

            >>> x = numpy.random.random(size=(10, 1)).astype('float32')
            >>> outs = exe.run(
            >>>     feed={'X': x},
            >>>     fetch_list=[loss.name])
543
        """
Y
Yancey1989 已提交
544 545 546 547

        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

548 549
        if scope is None:
            scope = global_scope()
X
polish  
Xin Pan 已提交
550 551
        if fetch_list is None:
            fetch_list = []
552

X
polish  
Xin Pan 已提交
553 554
        compiled = isinstance(program, compiler.CompiledProgram)
        # For backward compatibility, run directly.
555 556 557
        if not compiled:
            return self._run(
                program,
558
                self._default_executor,
559 560 561 562 563 564 565
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)
Z
Zeng Jinle 已提交
566 567 568 569 570
        else:
            if fetch_list and program._is_data_parallel and program._program and (
                    program._build_strategy.memory_optimize or
                    program._build_strategy.enable_inplace):
                self._check_fetch_vars_persistable(program._program, fetch_list)
571 572 573 574

        program._compile(scope, self.place)
        if program._is_data_parallel:
            return self._run_parallel(
X
fix  
Xin Pan 已提交
575
                program,
576 577 578
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
579
                fetch_var_name=fetch_var_name,
580
                return_numpy=return_numpy)
F
flame 已提交
581
        elif program._is_inference:
X
Xin Pan 已提交
582
            return self._run_inference(program._executor, feed)
583
        else:
X
Xin Pan 已提交
584 585
            # TODO(panyx0718): Can compile program to optimize executor
            # performance.
X
Xin Pan 已提交
586
            # TODO(panyx0718): executor should be able to run graph.
X
Xin Pan 已提交
587
            assert program._program, "CompiledProgram is compiled from graph, can only run with_data_parallel."
588 589
            return self._run(
                program._program,
590
                self._default_executor,
591 592 593 594 595 596 597 598
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

599 600
    def _run(self, program, exe, feed, fetch_list, feed_var_name,
             fetch_var_name, scope, return_numpy, use_program_cache):
601

602 603
        if feed is None:
            feed = {}
S
sneaxiy 已提交
604 605 606 607
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
608
        if not isinstance(feed, dict):
D
dzhwinter 已提交
609 610 611
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
612
        if program is None:
Y
Yu Yang 已提交
613
            program = default_main_program()
Y
Yu Yang 已提交
614

Y
Yu Yang 已提交
615
        if not isinstance(program, Program):
D
dzhwinter 已提交
616 617 618
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
619

620
        cache_key = _get_program_cache_key(feed, fetch_list)
621
        if use_program_cache:
Q
Qiao Longfei 已提交
622 623 624 625 626 627 628 629 630 631
            cached_program = self._get_program_cache(cache_key)
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
            program = cached_program
632
        else:
Q
Qiao Longfei 已提交
633 634 635 636 637 638 639 640 641
            self.program_caches.pop(cache_key, None)
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
S
sneaxiy 已提交
642
        exe.run(program.desc, scope, 0, True, True, fetch_var_name)
Q
Qiao Longfei 已提交
643
        outs = self._fetch_data(fetch_list, fetch_var_name, scope)
D
dzhwinter 已提交
644 645 646
        if return_numpy:
            outs = as_numpy(outs)
        return outs
F
flame 已提交
647

X
Xin Pan 已提交
648 649
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(trainer._desc())
        if program._fleet_opt:
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
667 668 669 670
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
671 672 673
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
674 675
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
676 677
            trainer = TrainerFactory()._create_trainer(program._fleet_opt)
            trainer._set_program(program)
678
        else:
679
            trainer = TrainerFactory()._create_trainer(
680
                program.program._fleet_opt)
681
            trainer._set_program(program.program)
682
        if thread <= 0:
D
dongdaxiang 已提交
683 684
            if dataset.thread_num <= 0:
                raise RuntimeError(
685 686
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
687
            else:
688
                trainer._set_thread(dataset.thread_num)
689
        else:
690 691 692
            trainer._set_thread(thread)
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
693
        return scope, trainer
694 695 696 697 698 699

    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
700 701 702 703
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
704 705 706 707 708 709
        """
        The document of infer_from_dataset is almost the same as
        train_from_dataset, except that in distributed training,
        push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-thread
        very easily.
710

711 712 713 714 715
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
716
               Please check the document of Dataset if needed. default is None
717 718 719
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
720 721
               of thread will be min(Dataset.thread_num, thread) if thread > 0, default is 0
            debug(bool): whether a user wants to run infer_from_dataset, default is False
722
            fetch_list(Variable List): fetch variable list, each variable
723 724 725
                                       will be printed during training, default is None
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
726

727 728 729 730
        Returns:
            None

        Examples:
731 732

            .. code-block:: python
733

734 735 736 737 738 739 740 741 742 743 744 745
                import paddle.fluid as fluid
                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                x = fluid.layers.data(name="x", type="int64")
                y = fluid.layers.data(name="y", type="int64")
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
                filelist = ["dataA.txt", "dataB.txt"]
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
746

747
        """
748 749 750
        if dataset == None:
            raise RuntimeError("dataset is needed and should be initialized")

751
        scope, trainer = self._prepare_trainer(
752 753 754 755 756 757 758 759
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
760
        trainer._set_infer(True)
761
        trainer._gen_trainer_desc()
762 763 764 765 766 767
        dataset._prepare_to_run()
        if debug:
            self._dump_debug_info(program=program, trainer=trainer)
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
768
        return None
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
        
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
               Please check the document of Dataset if needed.
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
               of thread will be min(Dataset.thread_num, thread)
            debug(bool): whether a user wants to run train_from_dataset 
            fetch_list(Variable List): fetch variable list, each variable
                                       will be printed during training
            fetch_info(String List): print information for each variable
            print_period(int): the number of mini-batches for each print
805 806 807

        Returns:
            None
808
        
809
        Examples:
810
        
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
            .. code-block:: python

              import paddle.fluid as fluid
              place = fluid.CPUPlace()
              exe = fluid.Executor(place)
              x = fluid.layers.data(name="x", type="int64")
              y = fluid.layers.data(name="y", type="int64")
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
              dataset.set_thread(2)
              filelist = ["dataA.txt", "dataB.txt"]
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
826 827

        """
828 829 830
        if dataset == None:
            raise RuntimeError("dataset is need and should be initialized")

831
        scope, trainer = self._prepare_trainer(
832 833 834 835 836 837 838 839
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
840
        trainer._gen_trainer_desc()
D
dongdaxiang 已提交
841
        dataset._prepare_to_run()
D
dongdaxiang 已提交
842
        if debug:
843
            self._dump_debug_info(program=program, trainer=trainer)
D
dongdaxiang 已提交
844 845 846
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
847
        return None