test_calibration_resnet50.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import numpy as np
import time
import sys
import random
import paddle
import paddle.fluid as fluid
import functools
import contextlib
24
from paddle.dataset.common import download
25 26
from PIL import Image, ImageEnhance
import math
27
import paddle.fluid.contrib.int8_inference.utility as int8_utility
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

random.seed(0)
np.random.seed(0)

DATA_DIM = 224

THREAD = 1
BUF_SIZE = 102400

DATA_DIR = 'data/ILSVRC2012'

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


43
# TODO(guomingz): Remove duplicated code from resize_short, crop_image, process_image, _reader_creator
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def process_image(sample, mode, color_jitter, rotate):
    img_path = sample[0]

    img = Image.open(img_path)

    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)

    if img.mode != 'RGB':
        img = img.convert('RGB')

    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std

    return img, sample[1]


def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False,
                    data_dir=DATA_DIR):
    def reader():
        with open(file_list) as flist:
            full_lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(full_lines)

            lines = full_lines

            for line in lines:
                img_path, label = line.split()
                img_path = os.path.join(data_dir, img_path)
                if not os.path.exists(img_path):
                    continue
                yield img_path, int(label)

    mapper = functools.partial(
        process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)

    return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


def val(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'val_list.txt')
    return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)


117
class TestCalibration(unittest.TestCase):
118
    def setUp(self):
119 120 121 122
        self.int8_download = 'int8/download'
        self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
                                               self.int8_download)

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        data_urls = []
        data_md5s = []
        self.data_cache_folder = ''
        if os.environ.get('DATASET') == 'full':
            data_urls.append(
                'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
            )
            data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
            data_urls.append(
                'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
            )
            data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
            self.data_cache_folder = self.download_data(data_urls, data_md5s,
                                                        "full_data", False)
        else:
            data_urls.append(
139
                'http://paddle-inference-dist.bj.bcebos.com/int8/calibration_test_data.tar.gz'
140 141 142 143
            )
            data_md5s.append('1b6c1c434172cca1bf9ba1e4d7a3157d')
            self.data_cache_folder = self.download_data(data_urls, data_md5s,
                                                        "small_data", False)
144 145 146 147

        # reader/decorator.py requires the relative path to the data folder
        cmd = 'rm -rf {0} && ln -s {1} {0}'.format("data",
                                                   self.data_cache_folder)
148 149
        os.system(cmd)

150 151 152
        self.batch_size = 1 if os.environ.get('DATASET') == 'full' else 50
        self.sample_iterations = 50 if os.environ.get(
            'DATASET') == 'full' else 1
153
        self.infer_iterations = 50000 if os.environ.get(
154
            'DATASET') == 'full' else 1
155

G
guomingz 已提交
156 157 158 159 160 161 162 163 164 165
        self.timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
        self.int8_model = ''

    def tearDown(self):
        try:
            os.system("rm -rf {}".format(self.int8_model))
        except Exception as e:
            print("Failed to delete {} due to {}".format(self.int8_model,
                                                         str(e)))

166 167 168 169 170 171
    def cache_unzipping(self, target_folder, zip_path):
        if not os.path.exists(target_folder):
            cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
                                                          zip_path)
            os.system(cmd)

172
    def download_data(self, data_urls, data_md5s, folder_name, is_model=True):
173
        data_cache_folder = os.path.join(self.cache_folder, folder_name)
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        zip_path = ''
        if os.environ.get('DATASET') == 'full':
            file_names = []
            for i in range(0, len(data_urls)):
                download(data_urls[i], self.int8_download, data_md5s[i])
                file_names.append(data_urls[i].split('/')[-1])

            zip_path = os.path.join(self.cache_folder,
                                    'full_imagenet_val.tar.gz')
            if not os.path.exists(zip_path):
                cat_command = 'cat'
                for file_name in file_names:
                    cat_command += ' ' + os.path.join(self.cache_folder,
                                                      file_name)
                cat_command += ' > ' + zip_path
                os.system(cat_command)

        if os.environ.get('DATASET') != 'full' or is_model:
            download(data_urls[0], self.int8_download, data_md5s[0])
            file_name = data_urls[0].split('/')[-1]
            zip_path = os.path.join(self.cache_folder, file_name)

        print('Data is downloaded at {0}').format(zip_path)
197 198 199
        self.cache_unzipping(data_cache_folder, zip_path)
        return data_cache_folder

200
    def download_model(self):
201
        pass
202

203 204 205 206 207 208 209 210 211 212 213 214 215
    def run_program(self, model_path, generate_int8=False, algo='direct'):
        image_shape = [3, 224, 224]

        fluid.memory_optimize(fluid.default_main_program())

        exe = fluid.Executor(fluid.CPUPlace())

        [infer_program, feed_dict,
         fetch_targets] = fluid.io.load_inference_model(model_path, exe)

        t = fluid.transpiler.InferenceTranspiler()
        t.transpile(infer_program, fluid.CPUPlace())

216 217
        val_reader = paddle.batch(val(), self.batch_size)
        iterations = self.infer_iterations
218 219

        if generate_int8:
G
guomingz 已提交
220 221
            self.int8_model = os.path.join(os.getcwd(),
                                           "calibration_out_" + self.timestamp)
222
            iterations = self.sample_iterations
G
guomingz 已提交
223 224 225 226 227 228
            try:
                os.system("mkdir " + self.int8_model)
            except Exception as e:
                print("Failed to create {} due to {}".format(self.int8_model,
                                                             str(e)))
                sys.exit(-1)
229

230
            calibrator = int8_utility.Calibrator(
231 232
                program=infer_program,
                pretrained_model=model_path,
233 234
                algo=algo,
                exe=exe,
G
guomingz 已提交
235
                output=self.int8_model,
236 237
                feed_var_names=feed_dict,
                fetch_list=fetch_targets)
238 239 240

        test_info = []
        cnt = 0
241
        periods = []
242 243 244 245 246 247 248 249
        for batch_id, data in enumerate(val_reader()):
            image = np.array(
                [x[0].reshape(image_shape) for x in data]).astype("float32")
            label = np.array([x[1] for x in data]).astype("int64")
            label = label.reshape([-1, 1])
            running_program = calibrator.sampling_program.clone(
            ) if generate_int8 else infer_program.clone()

250
            t1 = time.time()
251 252 253 254 255
            _, acc1, _ = exe.run(
                running_program,
                feed={feed_dict[0]: image,
                      feed_dict[1]: label},
                fetch_list=fetch_targets)
256 257 258 259
            t2 = time.time()
            period = t2 - t1
            periods.append(period)

260
            if generate_int8:
261
                calibrator.sample_data()
262 263 264 265

            test_info.append(np.mean(acc1) * len(data))
            cnt += len(data)

266 267 268
            if (batch_id + 1) % 100 == 0:
                print("{0} images,".format(batch_id + 1))
                sys.stdout.flush()
269

270 271
            if (batch_id + 1) == iterations:
                break
272 273

        if generate_int8:
274 275
            calibrator.save_int8_model()

276
            print(
277
                "Calibration is done and the corresponding files are generated at {}".
278 279
                format(os.path.abspath("calibration_out")))
        else:
280 281 282 283
            throughput = cnt / np.sum(periods)
            latency = np.average(periods)
            acc1 = np.sum(test_info) / cnt
            return (throughput, latency, acc1)
284

285 286 287 288 289 290 291 292 293 294 295 296 297

class TestCalibrationForResnet50(TestCalibration):
    def download_model(self):
        # resnet50 fp32 data
        data_urls = [
            'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
        ]
        data_md5s = ['4a5194524823d9b76da6e738e1367881']
        self.model_cache_folder = self.download_data(data_urls, data_md5s,
                                                     "resnet50_fp32")
        self.model = "ResNet-50"
        self.algo = "direct"

298
    def test_calibration(self):
299 300
        self.download_model()
        print("Start FP32 inference for {0} on {1} images ...").format(
301
            self.model, self.infer_iterations * self.batch_size)
302 303 304
        (fp32_throughput, fp32_latency,
         fp32_acc1) = self.run_program(self.model_cache_folder + "/model")
        print("Start INT8 calibration for {0} on {1} images ...").format(
305
            self.model, self.sample_iterations * self.batch_size)
306 307 308
        self.run_program(
            self.model_cache_folder + "/model", True, algo=self.algo)
        print("Start INT8 inference for {0} on {1} images ...").format(
309
            self.model, self.infer_iterations * self.batch_size)
310
        (int8_throughput, int8_latency,
G
guomingz 已提交
311
         int8_acc1) = self.run_program(self.int8_model)
312
        delta_value = fp32_acc1 - int8_acc1
313
        self.assertLess(delta_value, 0.01)
314 315 316 317 318 319 320 321 322
        print(
            "FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
            format(self.model, self.batch_size, fp32_throughput, fp32_latency,
                   fp32_acc1))
        print(
            "INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
            format(self.model, self.batch_size, int8_throughput, int8_latency,
                   int8_acc1))
        sys.stdout.flush()
323 324


325 326
if __name__ == '__main__':
    unittest.main()