interpolate_op.cc 9.8 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/interpolate_op.h"
S
sneaxiy 已提交
13
#include <memory>
14
#include <string>
15 16 17 18 19 20 21 22
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

23
class InterpolateOp : public framework::OperatorWithKernel {
24 25 26 27 28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
30
                   "Input(X) of InterpolateOp should not be null.");
31
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
32 33 34 35 36 37
                   "Output(Out) of InterpolationOp should not be null.");

    auto interp_method = ctx->Attrs().Get<std::string>("interp_method");
    PADDLE_ENFORCE(
        "bilinear" == interp_method || "nearest" == interp_method,
        "Interpolation method can only be \"bilinear\" or \"nearest\".");
38 39 40 41

    auto dim_x = ctx->GetInputDim("X");  // NCHW format
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");

D
dengkaipeng 已提交
42 43 44
    int out_h, out_w;
    float scale = ctx->Attrs().Get<float>("scale");
    if (scale > 0) {
D
dengkaipeng 已提交
45 46 47
      // round down
      out_h = static_cast<int>(dim_x[2] * scale);
      out_w = static_cast<int>(dim_x[3] * scale);
D
dengkaipeng 已提交
48 49 50 51 52
    } else {
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }

53
    if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
54 55 56 57
      auto out_size_dim = ctx->GetInputDim("OutSize");
      PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
                        "OutSize's dimension size must be 1");
      PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
58 59
      ctx->ShareLoD("X", "Out");
      return;
60 61 62 63 64 65 66 67
    }
    std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
    ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
68 69
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
70 71 72
  }
};

73
class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
74 75 76
 public:
  void Make() override {
    AddInput("X",
77 78
             "The input tensor of interpolate operator, "
             "This is a 4-D tensor with shape of [N,  C, H, w].");
79
    AddInput("OutSize",
80
             "This is a 1-D tensor with two numbers to specify output size. "
81 82
             "The first number is height and the second number is width.")
        .AsDispensable();
83 84 85
    AddOutput("Out",
              "The output tensor of interpolate operator, "
              "This is a 4-D tensor with shape of [N, C, H, W].");
86

87 88
    AddAttr<int>("out_h", "output height of interpolate op.");
    AddAttr<int>("out_w", "output width of interpolate op.");
D
dengkaipeng 已提交
89
    AddAttr<float>("scale", "scale factor of interpolate op.").SetDefault(0.);
90 91 92 93 94 95
    AddAttr<std::string>("interp_method",
                         "(string, default \"bilinear\"), interpolation "
                         "method, can be \"bilinear\" for "
                         "bilinear interpolation and \"nearest\" for nearest "
                         "neighbor interpolation.")
        .SetDefault("bilinear");
96 97
    AddAttr<bool>(
        "align_corners",
T
Tink_Y 已提交
98
        "an optional bool. Defaults to True. "
99 100
        "If True, the centers of 4 corner pixels of the input and output "
        "tensors are aligned, preserving the values at the corner pixels, "
T
Tink_Y 已提交
101
        "If False, are not aligned")
102 103
        .SetDefault(true);
    AddAttr<int>("align_mode",
T
Tink_Y 已提交
104
                 "(int, default \'1\'), optional for bilinear interpolation, "
T
tink2123 已提交
105 106
                 "can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , "
                 "can be \'1\' for src_idx = scale*dst_index .")
T
tink2123 已提交
107
        .SetDefault(1);
108
    AddComment(R"DOC(
109 110 111 112 113
          This operator samples input X to given output shape by using specified
          interpolation method, the interpolation methods can be \"nearest\"
          for nearest neighbor interpolation and \"bilinear\" for bilinear 
          interpolation.

114
          Nearest neighbor interpolation is to perform nearest neighbor interpolation
115
          in both the 3rd dimention(in height direction) and the 4th dimention(in width 
116 117
          direction) on input tensor.
            
118 119 120 121 122 123
          Bilinear interpolation is an extension of linear interpolation for 
          interpolating functions of two variables (e.g. H-direction and 
          W-direction in this op) on a rectilinear 2D grid. The key idea is 
          to perform linear interpolation first in one direction, and then 
          again in the other direction.

T
tink2123 已提交
124
          Align_corners and align_mode are optinal parameters,the calculation method 
125 126 127 128
          of interpolation can be selected by them.
          
          Example:

T
tink2123 已提交
129
          For scale:
130 131 132 133 134 135 136 137 138 139 140 141
          
            if align_corners = True and out_{size}>1 :

              scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
            
            else:
              
              scale_{factor} = float(in_{size}/out_{size})
            
          
          Nearest neighbor interpolation:
          
T
tink2123 已提交
142
          if:
143 144 145 146 147 148 149 150
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
              W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
151
          else:
152 153 154 155 156 157 158 159 160 161
              align_corners = True

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})

          Bilinear interpolation:

T
tink2123 已提交
162
          if:
163 164 165 166 167 168 169 170 171
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
172
          else:
173 174 175 176 177 178 179 180 181
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

          

182
          For details of nearest neighbor interpolation, please refer to Wikipedia: 
183
          https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
184 185 186

          For details of bilinear interpolation, please refer to Wikipedia: 
          https://en.wikipedia.org/wiki/Bilinear_interpolation
187 188 189 190
         )DOC");
  }
};

191
class InterpolateOpGrad : public framework::OperatorWithKernel {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
208 209 210
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
        ctx.GetPlace());
211 212 213
  }
};

S
sneaxiy 已提交
214 215 216 217 218 219 220 221 222
class InterpolateGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOp().Type() + "_grad");
    op->SetInput("X", Input("X"));
S
sneaxiy 已提交
223 224 225
    if (ForwardOp().Inputs().count("OutSize") > 0) {
      op->SetInput("OutSize", Input("OutSize"));
    }
S
sneaxiy 已提交
226 227 228 229 230 231 232 233 234 235
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(InterpolateGradNoNeedBufferVarsInference,
                                      "X");

236 237 238 239
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
240
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
241 242 243
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
244
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
245 246 247
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
248 249 250 251 252 253
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
254 255
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
256
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
257
                       ops::InterpolateGradKernel<double>);