test_text.py 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest
import random

import numpy as np

L
Leo Chen 已提交
23
import paddle
24 25 26
import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding, Linear, Layer
from paddle.fluid.layers import BeamSearchDecoder
27 28 29
from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.text import *
30

P
pangyoki 已提交
31 32
paddle.enable_static()

33 34 35 36 37 38 39 40 41 42

class ModuleApiTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
        cls._random_seed = 123
        np.random.seed(cls._random_seed)
        random.seed(cls._random_seed)

43
        cls.model_cls = type(cls.__name__ + "Model", (Layer, ), {
44 45 46 47 48 49 50 51 52 53 54 55
            "__init__": cls.model_init_wrapper(cls.model_init),
            "forward": cls.model_forward
        })

    @classmethod
    def tearDownClass(cls):
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

    @staticmethod
    def model_init_wrapper(func):
        def __impl__(self, *args, **kwargs):
56
            Layer.__init__(self)
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            func(self, *args, **kwargs)

        return __impl__

    @staticmethod
    def model_init(model, *args, **kwargs):
        raise NotImplementedError(
            "model_init acts as `Model.__init__`, thus must implement it")

    @staticmethod
    def model_forward(model, *args, **kwargs):
        return model.module(*args, **kwargs)

    def make_inputs(self):
        # TODO(guosheng): add default from `self.inputs`
        raise NotImplementedError(
            "model_inputs makes inputs for model, thus must implement it")

    def setUp(self):
        """
        For the model which wraps the module to be tested:
            Set input data by `self.inputs` list
            Set init argument values by `self.attrs` list/dict
            Set model parameter values by `self.param_states` dict
            Set expected output data by `self.outputs` list
        We can create a model instance and run once with these.
        """
        self.inputs = []
        self.attrs = {}
        self.param_states = {}
        self.outputs = []

    def _calc_output(self, place, mode="test", dygraph=True):
        if dygraph:
            fluid.enable_dygraph(place)
        else:
            fluid.disable_dygraph()
L
Leo Chen 已提交
94 95 96 97 98 99 100 101 102 103 104 105
        gen = paddle.manual_seed(self._random_seed)
        gen._is_init_py = False
        paddle.framework.random._manual_program_seed(self._random_seed)
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            layer = self.model_cls(**self.attrs) if isinstance(
                self.attrs, dict) else self.model_cls(*self.attrs)
            model = Model(layer, inputs=self.make_inputs())
            model.prepare()
            if self.param_states:
                model.load(self.param_states, optim_state=None)
            return model.test_batch(self.inputs)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    def check_output_with_place(self, place, mode="test"):
        dygraph_output = self._calc_output(place, mode, dygraph=True)
        stgraph_output = self._calc_output(place, mode, dygraph=False)
        expect_output = getattr(self, "outputs", None)
        for actual_t, expect_t in zip(dygraph_output, stgraph_output):
            self.assertTrue(np.allclose(actual_t, expect_t, rtol=1e-5, atol=0))
        if expect_output:
            for actual_t, expect_t in zip(dygraph_output, expect_output):
                self.assertTrue(
                    np.allclose(
                        actual_t, expect_t, rtol=1e-5, atol=0))

    def check_output(self):
        devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"]
        for device in devices:
            place = set_device(device)
            self.check_output_with_place(place)


class TestBasicLSTM(ModuleApiTest):
    def setUp(self):
        # TODO(guosheng): Change to big size. Currently bigger hidden size for
        # LSTM would fail, the second static graph run might get diff output
        # with others.
        shape = (2, 4, 16)
        self.inputs = [np.random.random(shape).astype("float32")]
        self.outputs = None
        self.attrs = {"input_size": 16, "hidden_size": 16}
        self.param_states = {}

    @staticmethod
    def model_init(model, input_size, hidden_size):
L
Leo Chen 已提交
139 140 141
        model.lstm = RNN(BasicLSTMCell(
            input_size,
            hidden_size, ))
142 143 144 145 146 147 148

    @staticmethod
    def model_forward(model, inputs):
        return model.lstm(inputs)[0]

    def make_inputs(self):
        inputs = [
149
            Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"),
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestBasicGRU(ModuleApiTest):
    def setUp(self):
        shape = (2, 4, 128)
        self.inputs = [np.random.random(shape).astype("float32")]
        self.outputs = None
        self.attrs = {"input_size": 128, "hidden_size": 128}
        self.param_states = {}

    @staticmethod
    def model_init(model, input_size, hidden_size):
        model.gru = RNN(BasicGRUCell(input_size, hidden_size))

    @staticmethod
    def model_forward(model, inputs):
        return model.gru(inputs)[0]

    def make_inputs(self):
        inputs = [
175
            Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"),
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestBeamSearch(ModuleApiTest):
    def setUp(self):
        shape = (8, 32)
        self.inputs = [
            np.random.random(shape).astype("float32"),
            np.random.random(shape).astype("float32")
        ]
        self.outputs = None
        self.attrs = {
            "vocab_size": 100,
            "embed_dim": 32,
            "hidden_size": 32,
        }
        self.param_states = {}

    @staticmethod
    def model_init(self,
                   vocab_size,
                   embed_dim,
                   hidden_size,
                   bos_id=0,
                   eos_id=1,
                   beam_size=4,
                   max_step_num=20):
        embedder = Embedding(size=[vocab_size, embed_dim])
        output_layer = Linear(hidden_size, vocab_size)
        cell = BasicLSTMCell(embed_dim, hidden_size)
        decoder = BeamSearchDecoder(
            cell,
            start_token=bos_id,
            end_token=eos_id,
            beam_size=beam_size,
            embedding_fn=embedder,
            output_fn=output_layer)
        self.beam_search_decoder = DynamicDecode(
            decoder, max_step_num=max_step_num, is_test=True)

    @staticmethod
    def model_forward(model, init_hidden, init_cell):
        return model.beam_search_decoder([init_hidden, init_cell])[0]

    def make_inputs(self):
        inputs = [
226 227
            Input([None, self.inputs[0].shape[-1]], "float32", "init_hidden"),
            Input([None, self.inputs[1].shape[-1]], "float32", "init_cell"),
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestTransformerEncoder(ModuleApiTest):
    def setUp(self):
        self.inputs = [
            # encoder input: [batch_size, seq_len, hidden_size]
            np.random.random([2, 4, 512]).astype("float32"),
            # self attention bias: [batch_size, n_head, seq_len, seq_len]
            np.random.randint(0, 1, [2, 8, 4, 4]).astype("float32") * -1e9
        ]
        self.outputs = None
        self.attrs = {
            "n_layer": 2,
            "n_head": 8,
            "d_key": 64,
            "d_value": 64,
            "d_model": 512,
            "d_inner_hid": 1024
        }
        self.param_states = {}

    @staticmethod
    def model_init(model,
                   n_layer,
                   n_head,
                   d_key,
                   d_value,
                   d_model,
                   d_inner_hid,
                   prepostprocess_dropout=0.1,
                   attention_dropout=0.1,
                   relu_dropout=0.1,
                   preprocess_cmd="n",
                   postprocess_cmd="da",
                   ffn_fc1_act="relu"):
        model.encoder = TransformerEncoder(
            n_layer, n_head, d_key, d_value, d_model, d_inner_hid,
            prepostprocess_dropout, attention_dropout, relu_dropout,
            preprocess_cmd, postprocess_cmd, ffn_fc1_act)

    @staticmethod
    def model_forward(model, enc_input, attn_bias):
        return model.encoder(enc_input, attn_bias)

    def make_inputs(self):
        inputs = [
279 280 281 282
            Input([None, None, self.inputs[0].shape[-1]], "float32",
                  "enc_input"),
            Input([None, self.inputs[1].shape[1], None, None], "float32",
                  "attn_bias"),
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestTransformerDecoder(TestTransformerEncoder):
    def setUp(self):
        self.inputs = [
            # decoder input: [batch_size, seq_len, hidden_size]
            np.random.random([2, 4, 512]).astype("float32"),
            # encoder output: [batch_size, seq_len, hidden_size]
            np.random.random([2, 5, 512]).astype("float32"),
            # self attention bias: [batch_size, n_head, seq_len, seq_len]
            np.random.randint(0, 1, [2, 8, 4, 4]).astype("float32") * -1e9,
            # cross attention bias: [batch_size, n_head, seq_len, seq_len]
            np.random.randint(0, 1, [2, 8, 4, 5]).astype("float32") * -1e9
        ]
        self.outputs = None
        self.attrs = {
            "n_layer": 2,
            "n_head": 8,
            "d_key": 64,
            "d_value": 64,
            "d_model": 512,
            "d_inner_hid": 1024
        }
        self.param_states = {}

    @staticmethod
    def model_init(model,
                   n_layer,
                   n_head,
                   d_key,
                   d_value,
                   d_model,
                   d_inner_hid,
                   prepostprocess_dropout=0.1,
                   attention_dropout=0.1,
                   relu_dropout=0.1,
                   preprocess_cmd="n",
                   postprocess_cmd="da"):
        model.decoder = TransformerDecoder(
            n_layer, n_head, d_key, d_value, d_model, d_inner_hid,
            prepostprocess_dropout, attention_dropout, relu_dropout,
            preprocess_cmd, postprocess_cmd)

    @staticmethod
    def model_forward(model,
                      dec_input,
                      enc_output,
                      self_attn_bias,
                      cross_attn_bias,
                      caches=None):
        return model.decoder(dec_input, enc_output, self_attn_bias,
                             cross_attn_bias, caches)

    def make_inputs(self):
        inputs = [
343 344 345 346 347 348 349 350
            Input([None, None, self.inputs[0].shape[-1]], "float32",
                  "dec_input"),
            Input([None, None, self.inputs[0].shape[-1]], "float32",
                  "enc_output"),
            Input([None, self.inputs[-1].shape[1], None, None], "float32",
                  "self_attn_bias"),
            Input([None, self.inputs[-1].shape[1], None, None], "float32",
                  "cross_attn_bias"),
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestTransformerBeamSearchDecoder(ModuleApiTest):
    def setUp(self):
        self.inputs = [
            # encoder output: [batch_size, seq_len, hidden_size]
            np.random.random([2, 5, 128]).astype("float32"),
            # cross attention bias: [batch_size, n_head, seq_len, seq_len]
            np.random.randint(0, 1, [2, 2, 1, 5]).astype("float32") * -1e9
        ]
        self.outputs = None
        self.attrs = {
            "vocab_size": 100,
            "n_layer": 2,
            "n_head": 2,
            "d_key": 64,
            "d_value": 64,
            "d_model": 128,
            "d_inner_hid": 128
        }
        self.param_states = {}

    @staticmethod
    def model_init(model,
                   vocab_size,
                   n_layer,
                   n_head,
                   d_key,
                   d_value,
                   d_model,
                   d_inner_hid,
                   prepostprocess_dropout=0.1,
                   attention_dropout=0.1,
                   relu_dropout=0.1,
                   preprocess_cmd="n",
                   postprocess_cmd="da",
                   bos_id=0,
                   eos_id=1,
                   beam_size=4,
                   max_step_num=20):
        model.beam_size = beam_size

        def embeder_init(self, size):
            Layer.__init__(self)
            self.embedder = Embedding(size)

        Embedder = type("Embedder", (Layer, ), {
            "__init__": embeder_init,
            "forward": lambda self, word, pos: self.embedder(word)
        })
        embedder = Embedder(size=[vocab_size, d_model])
        output_layer = Linear(d_model, vocab_size)
        model.decoder = TransformerDecoder(
            n_layer, n_head, d_key, d_value, d_model, d_inner_hid,
            prepostprocess_dropout, attention_dropout, relu_dropout,
            preprocess_cmd, postprocess_cmd)
        transformer_cell = TransformerCell(model.decoder, embedder,
                                           output_layer)
        model.beam_search_decoder = DynamicDecode(
            TransformerBeamSearchDecoder(
                transformer_cell, bos_id, eos_id, beam_size,
                var_dim_in_state=2),
            max_step_num,
            is_test=True)

    @staticmethod
    def model_forward(model, enc_output, trg_src_attn_bias):
        caches = model.decoder.prepare_incremental_cache(enc_output)
        enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
            enc_output, model.beam_size)
        trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
            trg_src_attn_bias, model.beam_size)
        static_caches = model.decoder.prepare_static_cache(enc_output)
        rs, _ = model.beam_search_decoder(
            inits=caches,
            enc_output=enc_output,
            trg_src_attn_bias=trg_src_attn_bias,
            static_caches=static_caches)
        return rs

    def make_inputs(self):
        inputs = [
438 439 440 441
            Input([None, None, self.inputs[0].shape[-1]], "float32",
                  "enc_output"),
            Input([None, self.inputs[1].shape[1], None, None], "float32",
                  "trg_src_attn_bias"),
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestSequenceTagging(ModuleApiTest):
    def setUp(self):
        self.inputs = [
            np.random.randint(0, 100, (2, 8)).astype("int64"),
            np.random.randint(1, 8, (2)).astype("int64"),
            np.random.randint(0, 5, (2, 8)).astype("int64")
        ]
        self.outputs = None
        self.attrs = {"vocab_size": 100, "num_labels": 5}
        self.param_states = {}

    @staticmethod
    def model_init(model,
                   vocab_size,
                   num_labels,
                   word_emb_dim=128,
                   grnn_hidden_dim=128,
                   emb_learning_rate=0.1,
                   crf_learning_rate=0.1,
                   bigru_num=2,
                   init_bound=0.1):
        model.tagger = SequenceTagging(vocab_size, num_labels, word_emb_dim,
                                       grnn_hidden_dim, emb_learning_rate,
                                       crf_learning_rate, bigru_num, init_bound)

    @staticmethod
    def model_forward(model, word, lengths, target=None):
        return model.tagger(word, lengths, target)

    def make_inputs(self):
        inputs = [
480 481 482
            Input([None, None], "int64", "word"),
            Input([None], "int64", "lengths"),
            Input([None, None], "int64", "target"),
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestSequenceTaggingInfer(TestSequenceTagging):
    def setUp(self):
        super(TestSequenceTaggingInfer, self).setUp()
        self.inputs = self.inputs[:2]  # remove target

    def make_inputs(self):
        inputs = super(TestSequenceTaggingInfer,
                       self).make_inputs()[:2]  # remove target
        return inputs


class TestStackedRNN(ModuleApiTest):
    def setUp(self):
        shape = (2, 4, 16)
        self.inputs = [np.random.random(shape).astype("float32")]
        self.outputs = None
        self.attrs = {"input_size": 16, "hidden_size": 16, "num_layers": 2}
        self.param_states = {}

    @staticmethod
    def model_init(model, input_size, hidden_size, num_layers):
        cells = [
            BasicLSTMCell(input_size, hidden_size),
            BasicLSTMCell(hidden_size, hidden_size)
        ]
        stacked_cell = StackedRNNCell(cells)
        model.lstm = RNN(stacked_cell)

    @staticmethod
    def model_forward(self, inputs):
        return self.lstm(inputs)[0]

    def make_inputs(self):
        inputs = [
524
            Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"),
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestLSTM(ModuleApiTest):
    def setUp(self):
        shape = (2, 4, 16)
        self.inputs = [np.random.random(shape).astype("float32")]
        self.outputs = None
        self.attrs = {"input_size": 16, "hidden_size": 16, "num_layers": 2}
        self.param_states = {}

    @staticmethod
    def model_init(model, input_size, hidden_size, num_layers):
        model.lstm = LSTM(input_size, hidden_size, num_layers=num_layers)

    @staticmethod
    def model_forward(model, inputs):
        return model.lstm(inputs)[0]

    def make_inputs(self):
        inputs = [
550
            Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"),
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestBiLSTM(ModuleApiTest):
    def setUp(self):
        shape = (2, 4, 16)
        self.inputs = [np.random.random(shape).astype("float32")]
        self.outputs = None
        self.attrs = {"input_size": 16, "hidden_size": 16, "num_layers": 2}
        self.param_states = {}

    @staticmethod
    def model_init(model,
                   input_size,
                   hidden_size,
                   num_layers,
                   merge_mode="concat",
                   merge_each_layer=False):
        model.bilstm = BidirectionalLSTM(
            input_size,
            hidden_size,
            num_layers=num_layers,
            merge_mode=merge_mode,
            merge_each_layer=merge_each_layer)

    @staticmethod
    def model_forward(model, inputs):
        return model.bilstm(inputs)[0]

    def make_inputs(self):
        inputs = [
586
            Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"),
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
        ]
        return inputs

    def test_check_output_merge0(self):
        self.check_output()

    def test_check_output_merge1(self):
        self.attrs["merge_each_layer"] = True
        self.check_output()


class TestGRU(ModuleApiTest):
    def setUp(self):
        shape = (2, 4, 64)
        self.inputs = [np.random.random(shape).astype("float32")]
        self.outputs = None
        self.attrs = {"input_size": 64, "hidden_size": 128, "num_layers": 2}
        self.param_states = {}

    @staticmethod
    def model_init(model, input_size, hidden_size, num_layers):
        model.gru = GRU(input_size, hidden_size, num_layers=num_layers)

    @staticmethod
    def model_forward(model, inputs):
        return model.gru(inputs)[0]

    def make_inputs(self):
        inputs = [
616
            Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"),
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


class TestBiGRU(ModuleApiTest):
    def setUp(self):
        shape = (2, 4, 64)
        self.inputs = [np.random.random(shape).astype("float32")]
        self.outputs = None
        self.attrs = {"input_size": 64, "hidden_size": 128, "num_layers": 2}
        self.param_states = {}

    @staticmethod
    def model_init(model,
                   input_size,
                   hidden_size,
                   num_layers,
                   merge_mode="concat",
                   merge_each_layer=False):
        model.bigru = BidirectionalGRU(
            input_size,
            hidden_size,
            num_layers=num_layers,
            merge_mode=merge_mode,
            merge_each_layer=merge_each_layer)

    @staticmethod
    def model_forward(model, inputs):
        return model.bigru(inputs)[0]

    def make_inputs(self):
        inputs = [
652
            Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"),
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        ]
        return inputs

    def test_check_output_merge0(self):
        self.check_output()

    def test_check_output_merge1(self):
        self.attrs["merge_each_layer"] = True
        self.check_output()


class TestCNNEncoder(ModuleApiTest):
    def setUp(self):
        shape = (2, 32, 8)  # [N, C, H]
        self.inputs = [np.random.random(shape).astype("float32")]
        self.outputs = None
        self.attrs = {"num_channels": 32, "num_filters": 64, "num_layers": 2}
        self.param_states = {}

    @staticmethod
    def model_init(model, num_channels, num_filters, num_layers):
        model.cnn_encoder = CNNEncoder(
            num_layers=2,
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=[2, 3],
            pool_size=[7, 6])

    @staticmethod
    def model_forward(model, inputs):
        return model.cnn_encoder(inputs)

    def make_inputs(self):
        inputs = [
687
            Input([None, self.inputs[-1].shape[1], None], "float32", "input"),
688 689 690 691 692 693 694 695 696
        ]
        return inputs

    def test_check_output(self):
        self.check_output()


if __name__ == '__main__':
    unittest.main()