dist_fleet_ctr.py 8.2 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Distribute CTR model for test fleet api
"""
T
tangwei12 已提交
17 18 19 20 21 22 23

from __future__ import print_function

import shutil
import tempfile
import time

1
123malin 已提交
24
import paddle
T
tangwei12 已提交
25 26
import paddle.fluid as fluid
import os
1
123malin 已提交
27
import numpy as np
T
tangwei12 已提交
28 29 30

import ctr_dataset_reader
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
31
from paddle.distributed.fleet.base.util_factory import fleet_util
T
tangwei12 已提交
32

P
pangyoki 已提交
33 34
paddle.enable_static()

T
tangwei12 已提交
35 36 37 38 39
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


40 41 42 43 44 45 46 47 48 49 50
def fake_ctr_reader():
    def reader():
        for _ in range(1000):
            deep = np.random.random_integers(0, 1e5 - 1, size=16).tolist()
            wide = np.random.random_integers(0, 1e5 - 1, size=8).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            yield [deep, wide, label]

    return reader


T
tangwei12 已提交
51
class TestDistCTR2x2(FleetDistRunnerBase):
52 53 54 55
    """
    For test CTR model, using Fleet api
    """

56
    def net(self, args, batch_size=4, lr=0.01):
57 58 59 60 61 62 63 64 65
        """
        network definition

        Args:
            batch_size(int): the size of mini-batch for training
            lr(float): learning rate of training
        Returns:
            avg_cost: LoDTensor of cost.
        """
66 67
        dnn_input_dim, lr_input_dim = int(1e5), int(1e5)

T
tangwei12 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        dnn_data = fluid.layers.data(
            name="dnn_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        lr_data = fluid.layers.data(
            name="lr_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        label = fluid.layers.data(
            name="click",
            shape=[-1, 1],
            dtype="int64",
            lod_level=0,
            append_batch_size=False)

        datas = [dnn_data, lr_data, label]

89 90 91 92 93 94 95
        if args.reader == "pyreader":
            self.reader = fluid.io.PyReader(
                feed_list=datas,
                capacity=64,
                iterable=False,
                use_double_buffer=False)

T
tangwei12 已提交
96
        # build dnn model
C
Chengmo 已提交
97
        dnn_layer_dims = [128, 128, 64, 32, 1]
T
tangwei12 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        dnn_embedding = fluid.layers.embedding(
            is_distributed=False,
            input=dnn_data,
            size=[dnn_input_dim, dnn_layer_dims[0]],
            param_attr=fluid.ParamAttr(
                name="deep_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)
        dnn_pool = fluid.layers.sequence_pool(
            input=dnn_embedding, pool_type="sum")
        dnn_out = dnn_pool
        for i, dim in enumerate(dnn_layer_dims[1:]):
            fc = fluid.layers.fc(
                input=dnn_out,
                size=dim,
                act="relu",
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Constant(value=0.01)),
                name='dnn-fc-%d' % i)
            dnn_out = fc

        # build lr model
        lr_embbding = fluid.layers.embedding(
            is_distributed=False,
            input=lr_data,
            size=[lr_input_dim, 1],
            param_attr=fluid.ParamAttr(
                name="wide_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)
        lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

        merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)

        predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
        acc = fluid.layers.accuracy(input=predict, label=label)
134

T
tangwei12 已提交
135 136
        auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                              label=label)
137

T
tangwei12 已提交
138 139 140 141
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        self.feeds = datas
142
        self.train_file_path = ["fake1", "fake2"]
T
tangwei12 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

1
123malin 已提交
158
    def do_pyreader_training(self, fleet):
159 160 161 162 163
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """
T
tangwei12 已提交
164 165 166

        exe = fluid.Executor(fluid.CPUPlace())
        fleet.init_worker()
167
        exe.run(fluid.default_startup_program())
168 169
        batch_size = 4
        train_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
1
123malin 已提交
170 171 172 173 174 175 176
        self.reader.decorate_sample_list_generator(train_reader)

        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
177
                    loss_val = exe.run(program=fluid.default_main_program(),
1
123malin 已提交
178 179
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
180 181 182 183 184
                    # TODO(randomly fail)
                    #   reduce_output = fleet_util.all_reduce(
                    #       np.array(loss_val), mode="sum")
                    #   loss_all_trainer = fleet_util.all_gather(float(loss_val))
                    #   loss_val = float(reduce_output) / len(loss_all_trainer)
185 186 187 188
                    message = "TRAIN ---> pass: {} loss: {}\n".format(epoch_id,
                                                                      loss_val)
                    fleet_util.print_on_rank(message, 0)

1
123malin 已提交
189 190 191 192 193 194 195 196 197 198 199 200
                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

        model_dir = tempfile.mkdtemp()
        fleet.save_inference_model(
            exe, model_dir, [feed.name for feed in self.feeds], self.avg_cost)
        self.check_model_right(model_dir)
        shutil.rmtree(model_dir)
        fleet.stop_worker()

    def do_dataset_training(self, fleet):
201
        train_file_list = ctr_dataset_reader.prepare_fake_data()
1
123malin 已提交
202 203 204 205

        exe = fluid.Executor(fluid.CPUPlace())

        fleet.init_worker()
206
        exe.run(fluid.default_startup_program())
1
123malin 已提交
207 208 209

        thread_num = 2
        batch_size = 128
210
        filelist = train_file_list
T
tangwei12 已提交
211 212

        # config dataset
213
        dataset = paddle.distributed.QueueDataset()
T
tangwei12 已提交
214
        pipe_command = 'python ctr_dataset_reader.py'
215 216 217 218 219 220

        dataset.init(
            batch_size=batch_size,
            use_var=self.feeds,
            pipe_command=pipe_command,
            thread_num=thread_num)
T
tangwei12 已提交
221 222 223

        dataset.set_filelist(filelist)

224
        for epoch_id in range(1):
T
tangwei12 已提交
225 226 227
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
228
                program=fluid.default_main_program(),
T
tangwei12 已提交
229 230 231
                dataset=dataset,
                fetch_list=[self.avg_cost],
                fetch_info=["cost"],
232
                print_period=2,
233
                debug=int(os.getenv("Debug", "0")))
234 235
            pass_time = time.time() - pass_start

236 237 238 239 240 241 242
        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
            fleet.save_inference_model(exe, model_dir,
                                       [feed.name for feed in self.feeds],
                                       self.avg_cost)
            self.check_model_right(model_dir)
            shutil.rmtree(model_dir)
243

T
tangwei12 已提交
244 245 246 247 248
        fleet.stop_worker()


if __name__ == "__main__":
    runtime_main(TestDistCTR2x2)