adagrad_op.cc 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/adagrad_op.h"

namespace paddle {
namespace operators {

class AdagradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext *ctx) const override {
K
Kexin Zhao 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Moment"),
                   "Input(Moment) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of AdagradOp should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
                   "Output(MomentOut) of AdagradOp should not be null.");

    auto lr_dims = ctx->GetInputDim("LearningRate");
40
    PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
K
Kexin Zhao 已提交
41 42
                      "LearningRate should have one element");
    auto param_dims = ctx->GetInputDim("Param");
43
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
44 45
        param_dims, ctx->GetInputDim("Grad"),
        "Param and Grad input of AdagradOp should have the same dimension.");
46
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
47 48
        param_dims, ctx->GetInputDim("Moment"),
        "Param and Moment input of AdagradOp should have the same dimension.");
49

K
Kexin Zhao 已提交
50 51
    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("MomentOut", param_dims);
52 53 54 55 56 57 58 59
  }
};

class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  AdagradOpMaker(framework::OpProto *proto,
                 framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
Kexin Zhao 已提交
60 61 62 63 64 65 66 67 68 69 70 71
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("Moment", "(Tensor) Second moment");
    AddInput("LearningRate", "(Tensor) Learning rate");

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("MomentOut", "(Tensor) Output second moment");

    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-6f);
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    AddComment(R"DOC(

Adaptive Gradient Algorithm (Adagrad).

moment_out = moment + grad * grad
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)

The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have the epsilon attribute. It is added here for numerical stability 
by avoiding division by zero.

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
REGISTER_OP_CPU_KERNEL(adagrad,
                       ops::AdagradOpKernel<paddle::platform::CPUPlace, float>);