hl_cnn_stub.h 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef HL_CNN_STUB_H_
#define HL_CNN_STUB_H_

#include "hl_cnn.h"

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
inline void hl_maxpool_forward(const int frameCnt,
                               const real* inputData,
                               const int channels,
                               const int height,
                               const int width,
                               const int pooledH,
                               const int pooledW,
                               const int sizeX,
                               const int sizeY,
                               const int strideH,
                               const int strideW,
                               const int paddingH,
                               const int paddingW,
                               real* tgtData,
                               const int tgtStride) {}

inline void hl_maxpool_backward(const int frameCnt,
                                const real* inputData,
                                const real* outData,
                                const real* outGrad,
                                const int channels,
                                const int height,
                                const int width,
                                const int pooledH,
                                const int pooledW,
                                const int sizeX,
                                const int sizeY,
                                const int strideH,
                                const int strideW,
                                const int paddingH,
                                const int paddingW,
                                real scaleA,
                                real scaleB,
                                real* targetGrad,
                                const int outStride) {}

inline void hl_avgpool_forward(const int frameCnt,
                               const real* inputData,
                               const int channels,
                               const int height,
                               const int width,
                               const int pooledH,
                               const int pooledW,
                               const int sizeX,
                               const int sizeY,
                               const int strideH,
                               const int strideW,
                               const int paddingH,
                               const int paddingW,
                               real* tgtData,
                               const int tgtStride) {}

inline void hl_avgpool_backward(const int frameCnt,
                                const real* outGrad,
                                const int channels,
                                const int height,
                                const int width,
                                const int pooledH,
                                const int pooledW,
                                const int sizeX,
                                const int sizeY,
                                const int strideH,
                                const int strideW,
                                int paddingH,
                                int paddingW,
                                real scaleA,
                                real scaleB,
                                real* backGrad,
                                const int outStride) {}

L
liaogang 已提交
90 91 92 93 94 95 96 97 98 99
inline void hl_bilinear_forward(const real* inData,
                                const size_t inImgH,
                                const size_t inImgW,
                                const size_t inputH,
                                const size_t inputW,
                                real* outData,
                                const size_t outImgH,
                                const size_t outImgW,
                                const size_t outputH,
                                const size_t outputW,
L
liaogang 已提交
100 101 102
                                const size_t numChannels,
                                const real ratioH,
                                const real ratioW) {}
L
liaogang 已提交
103 104

inline void hl_bilinear_backward(real* inGrad,
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                                 const size_t inImgH,
                                 const size_t inImgW,
                                 const size_t inputH,
                                 const size_t inputW,
                                 const real* outGrad,
                                 const size_t outImgH,
                                 const size_t outImgW,
                                 const size_t outputH,
                                 const size_t outputW,
                                 const size_t numChannels,
                                 const real ratioH,
                                 const real ratioW) {}

inline void hl_maxout_forward(const real* inData,
                              real* outData,
                              int* idData,
                              size_t batchSize,
                              size_t size,
                              size_t featLen,
                              size_t group) {}

inline void hl_maxout_backward(real* inGrad,
                               const real* outGrad,
                               const int* idData,
                               size_t batchSize,
                               size_t size,
                               size_t featLen,
                               size_t group) {}
133

Z
zhangjinchao01 已提交
134
#endif  // HL_CNN_STUB_H_