test_dist_base.py 35.2 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17 18 19 20 21 22
import time

import unittest
import os
import sys
import signal
import subprocess
23
import six
W
Wu Yi 已提交
24
import argparse
W
Wu Yi 已提交
25 26
import pickle
import numpy as np
27
import time
28
import paddle.fluid as fluid
29
from paddle.fluid import compiler
30 31 32
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
33

34 35 36
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
37
RUN_STEP = 5
38
DEFAULT_BATCH_SIZE = 2
39
DIST_UT_PORT = 0
40

T
typhoonzero 已提交
41

42 43 44 45 46 47 48 49
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
50 51
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
52
    if six.PY2:
53
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
54
    else:
55
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
56 57


58 59 60 61
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
62
class TestDistRunnerBase(object):
W
Wu Yi 已提交
63 64 65
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
66 67
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
68 69 70
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

71
    @staticmethod
W
Wu Yi 已提交
72 73 74 75 76
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
77
                       dc_asgd=False,
78
                       current_endpoint=None,
T
tangwei12 已提交
79 80
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
81
        # NOTE: import fluid until runtime, or else forking processes will cause error.
82
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
83
        config.enable_dc_asgd = dc_asgd
84
        config.sync_mode = sync_mode
T
tangwei12 已提交
85 86
        config.runtime_split_send_recv = hogwild_mode

87 88
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
89
        # config.runtime_split_send_recv = True
90
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
91 92 93 94
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
95
            trainers=trainers,
T
tangwei12 已提交
96
            sync_mode=sync_mode,
97
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
98 99
        return t

W
Wu Yi 已提交
100
    def run_pserver(self, args):
W
Wu Yi 已提交
101
        self.lr = args.lr
102
        self.get_model(batch_size=args.batch_size)
103
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
104 105 106 107 108 109 110 111 112

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
113 114 115
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
116

T
typhoonzero 已提交
117 118 119
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
120
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
121
        exe.run(pserver_prog)
122
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
123

124 125 126 127 128 129 130 131 132 133
    def run_gpu_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2"

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
134
        dist_strategy.fuse_memory_size = 1  # MB
135
        dist_strategy.fuse_laryer_size = 1
136 137 138 139
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
140 141 142

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
143
        print_to_err("gpu_fleet", "fleet.node_num:")
T
tangwei12 已提交
144 145
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
146 147

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
148
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

179
        print_to_err(type(self).__name__, "begin to train on trainer")
180 181 182 183 184 185
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
186 187
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
188 189 190 191 192 193

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

194
    def run_trainer(self, args):
W
Wu Yi 已提交
195
        self.lr = args.lr
W
Wu Yi 已提交
196 197 198
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
199 200 201
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
202 203 204
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
205

W
Wu Yi 已提交
206
        if args.update_method == "pserver":
207
            print_to_err(
208 209
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
210 211 212 213 214 215 216 217 218
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
219
            trainer_prog = t.get_trainer_program()
220
            print_to_err(
221 222
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
223
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
224 225 226
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
227
            config.nccl_comm_num = args.nccl_comm_num
228 229 230
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
231
            print_to_err(
232 233
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
234 235 236 237 238 239 240
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
241
            print_to_err(
242 243
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
244
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
245
        else:
246
            print_to_err(
247 248
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
249
            trainer_prog = fluid.default_main_program()
250
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
251

252
        if args.use_cuda:
253 254
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
255 256 257
        else:
            place = fluid.CPUPlace()

258 259
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
260
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
261

W
Wu Yi 已提交
262 263
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
264

W
Wu Yi 已提交
265
        build_stra = fluid.BuildStrategy()
266 267 268
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
269

T
tangwei12 已提交
270 271 272
        if args.hogwild:
            build_stra.async_mode = True

273 274 275
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
276 277 278 279 280
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
281
        pass_builder = None
X
Xin Pan 已提交
282
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
283
            pass_builder = build_stra._finalize_strategy_and_create_passes()
284
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
285
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
286

W
Wu Yi 已提交
287
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
288 289
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
290
        else:
W
Wu Yi 已提交
291
            # case args.update_method == "nccl2_reduce_layer":
292 293
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
294

295 296 297 298
        if args.use_dgc:
            # fuse_all_reduce_ops require that gradients should not be sparse types
            build_stra.fuse_all_reduce_ops = False

299
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
300
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
301
            loss_name=avg_cost.name,
W
Wu Yi 已提交
302
            build_strategy=build_stra,
W
Wu Yi 已提交
303
            exec_strategy=exec_strategy)
304
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
305 306 307 308 309 310 311

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
312
        reader_generator = train_reader()
T
typhoonzero 已提交
313

314 315
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
316
            if args.update_method != "local" and args.use_reader_alloc:
317 318 319 320 321 322 323
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
324

325
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
326
        out_losses = []
327
        for i in six.moves.xrange(RUN_STEP):
328 329
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
330
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
331
            out_losses.append(loss[0])
332 333
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
334

335
        print_to_out(out_losses)
T
typhoonzero 已提交
336 337


338 339 340 341 342 343 344 345 346 347
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

    def run_trainer(self, args):
Y
Yan Xu 已提交
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        seed = 90
        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        def _get_data(batch):
            if args.update_method != "local":
                new_batch = []
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return batch

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
366 367 368
            np.random.seed(seed)
            import random
            random.seed = seed
369 370
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
371

372 373 374 375 376 377
            if args.update_method == "nccl2":
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
378
                print_to_err(
379 380
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
381
                dygraph.parallel.prepare_context(strategy)
Y
Yan Xu 已提交
382
                model = dygraph.parallel.DataParallel(model, strategy)
383
                print_to_err(type(self).__name__, "model built in dygraph")
384
            out_losses = []
385
            print_to_err(type(self).__name__, "begin to run dygraph training")
386 387 388 389 390
            for step_id, data in enumerate(train_reader()):
                data = _get_data(data)
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
391
                if step_id % 10 == 0:
392
                    print_to_err(
393
                        type(self).__name__,
394
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
395
                out_losses.append(loss.numpy())
396

Y
Yan Xu 已提交
397 398 399
                # FIXME(Yancey1989): scale the loss inplace
                if args.update_method == "nccl2":
                    loss = model.scale_loss(loss)
400 401

                loss.backward()
Y
Yan Xu 已提交
402 403
                if args.update_method == "nccl2":
                    model.apply_collective_grads()
404 405 406

                opt.minimize(loss)
                model.clear_gradients()
407
        print_to_out(out_losses)
408 409


T
typhoonzero 已提交
410
def runtime_main(test_class):
W
Wu Yi 已提交
411 412 413 414
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
415 416 417 418
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
W
Wu Yi 已提交
419
        choices=["pserver", "nccl2", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
420 421
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
422
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
423 424
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
425
    parser.add_argument('--gpu_fleet_api', action='store_true')
426 427
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
428
    parser.add_argument(
429
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
430 431 432
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
433
    parser.add_argument('--use_cuda', action='store_true')
434
    parser.add_argument('--use_dgc', action='store_true')
W
Wu Yi 已提交
435
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
436
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
437
    parser.add_argument('--hogwild', action='store_true')
438
    parser.add_argument(
W
Wu Yi 已提交
439
        '--use_reader_alloc', action='store_true', required=False)
440
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
441
    parser.add_argument('--lr', required=False, type=float, default=0.001)
442 443
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
444 445 446 447 448
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
W
Wu Yi 已提交
449 450

    args = parser.parse_args()
T
typhoonzero 已提交
451 452

    model = test_class()
W
Wu Yi 已提交
453
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
454
        model.run_pserver(args)
455 456
    elif args.gpu_fleet_api:
        model.run_gpu_fleet_api_trainer(args)
T
typhoonzero 已提交
457
    else:
458
        model.run_trainer(args)
X
Xin Pan 已提交
459

M
minqiyang 已提交
460

M
minqiyang 已提交
461
import paddle.compat as cpt
Y
Yancey1989 已提交
462 463
import socket
from contextlib import closing
M
minqiyang 已提交
464

X
Xin Pan 已提交
465 466

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
467 468 469
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

470 471 472
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
473
            self._use_dgc = False
474 475 476 477 478 479 480
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
481 482 483 484
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
485

X
Xin Pan 已提交
486 487 488
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
489
        self._port_set = set()
M
minqiyang 已提交
490
        self._python_interp = sys.executable
W
Wu Yi 已提交
491
        self._sync_mode = True
T
tangwei12 已提交
492
        self._hogwild_mode = False
493
        self._enforce_place = None
W
Wu Yi 已提交
494
        self._use_reduce = False
W
Wu Yi 已提交
495
        self._dc_asgd = False  # must use with async mode
496
        self._use_reader_alloc = True
W
Wu Yi 已提交
497
        self._nccl2_mode = False
498
        self._mp_mode = False
W
Wu Yi 已提交
499 500 501 502 503
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
504
        self._lr = 0.001
505
        self._use_dgc = False
506
        self._dygraph = False
507
        self._nccl_comm_num = 1
508
        self._enable_backward_deps = False
509
        self._gpu_fleet_api = False
510 511
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
512
        self._use_hallreduce = False
W
Wu Yi 已提交
513
        self._setup_config()
514 515 516 517 518 519 520 521 522 523 524 525 526 527

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

528
        self._after_setup_config()
X
Xin Pan 已提交
529

Y
Yancey1989 已提交
530
    def _find_free_port(self):
Y
Yancey1989 已提交
531 532 533 534
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
535
                print_to_err(
536
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
537 538 539 540 541 542 543
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
544

545 546 547 548 549
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
550
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
551 552 553 554 555 556 557 558
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
559
        ps0_cmd = ps_cmd % \
560 561
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
562
        ps1_cmd = ps_cmd % \
563 564
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
565 566 567 568

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
569

570 571
        print(ps0_cmd)
        print(ps1_cmd)
572 573
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
574

575
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
576
        ps0_proc = subprocess.Popen(
577 578 579 580
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
581
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
582
        ps1_proc = subprocess.Popen(
583 584 585 586
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
587

588
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
589

590 591 592 593 594
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
595
                   batch_merge_repeat=1,
596 597
                   log_name="",
                   gpus="0"):
G
gongweibao 已提交
598

599 600 601 602 603 604 605 606
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

        cmd += " %s --role trainer --lr %f" % (model, self._lr)

607 608 609 610
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
611 612
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
613

614
        if self.__use_cuda:
615
            cmd += " --use_cuda"
W
Wu Yi 已提交
616
            env_local = {
617
                "CUDA_VISIBLE_DEVICES": gpus,
W
Wu Yi 已提交
618 619 620
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
621 622 623
        else:
            env_local = {'CPU_NUM': '1'}

624 625 626 627
        # not use dgc in single card
        if len(gpus) > 1 and self._use_dgc:
            cmd += " --use_dgc"

W
Wu Yi 已提交
628 629
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
630

631
        if check_error_log:
632
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
633
            local_proc = subprocess.Popen(
634
                cmd.split(" "),
G
gongweibao 已提交
635
                stdout=subprocess.PIPE,
636
                stderr=err_log,
W
Wu Yi 已提交
637
                env=env_local)
G
gongweibao 已提交
638 639
        else:
            local_proc = subprocess.Popen(
640
                cmd.split(" "),
G
gongweibao 已提交
641
                stdout=subprocess.PIPE,
642
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
643
                env=env_local)
G
gongweibao 已提交
644

645 646 647 648 649 650
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
651
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
652

W
Wu Yi 已提交
653
        return pickle.loads(local_out)
654

655
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
656
        # Run dist train to compare with local results
657 658
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
659

X
Xin Pan 已提交
660
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
661

662 663 664 665 666 667 668 669
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
670
        tr0_cmd = tr_cmd % \
671
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
672
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
673
        tr1_cmd = tr_cmd % \
674
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
675
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
676 677 678 679

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
680 681 682
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
683 684 685
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
686 687 688
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
689
        if self.__use_cuda:
690 691 692 693 694 695 696 697 698 699
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
700

W
Wu Yi 已提交
701 702
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
703 704
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
705

706
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
707
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
708
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
709
            stdout=subprocess.PIPE,
G
gongweibao 已提交
710
            stderr=tr0_pipe,
X
Xin Pan 已提交
711
            env=env0)
712
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
713
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
714
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
715
            stdout=subprocess.PIPE,
G
gongweibao 已提交
716
            stderr=tr1_pipe,
X
Xin Pan 已提交
717 718
            env=env1)

719 720 721 722 723 724 725 726 727 728 729 730
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

731 732
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
733

G
gongweibao 已提交
734
        # close trainer file
735 736 737 738
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
739

W
Wu Yi 已提交
740 741
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
742

W
Wu Yi 已提交
743 744
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

745 746 747
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
748 749 750 751 752 753 754
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

755
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
756 757
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
758 759

        if self._use_reduce:
760
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
761
        if self._use_reader_alloc:
762
            tr_cmd += " --use_reader_alloc"
W
Wu Yi 已提交
763
        if self.__use_cuda:
764 765 766 767
            tr_cmd += " --use_cuda"
            env.update({
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
768 769 770
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
771
            })
W
Wu Yi 已提交
772
        else:
773
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
774

775
        if self._use_dgc:
776 777 778 779
            tr_cmd += " --use_dgc"

        if self._mp_mode:
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
780 781

        if self._nccl_comm_num > 1:
782
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
783

784 785
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
786

787
        if self._enable_backward_deps:
788
            tr_cmd += " --enable_backward_deps"
789

790 791
        if self._gpu_fleet_api:
            tr_cmd += " --gpu_fleet_api"
792 793 794 795
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
796

797 798 799
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

800
        return tr_cmd, env
W
Wu Yi 已提交
801

802
    def _run_cluster_nccl2(self, model, envs, nccl2_reduce_layer,
803
                           check_error_log, log_name):
804 805
        if self._use_hallreduce:
            self._ps_endpoints = ""
806 807 808 809 810 811 812 813 814 815

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
816
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
817

818 819 820 821 822 823
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        if nccl2_reduce_layer:
            update_method = "nccl2_reduce_layer"
        else:
            update_method = "nccl2"
W
Wu Yi 已提交
824

825
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
826

827 828 829 830 831 832 833 834
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
835

836
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
837

838
            print_to_err(
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

857 858 859
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
860
        return pickle.loads(outs[0]), pickle.loads(outs[1])
861

862
    def _get_required_envs(self, check_error_log=False, need_envs={}):
863 864 865 866 867 868
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
869
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
870
            "FLAGS_rpc_retry_bind_port": "50",
871
            "FLAGS_cudnn_deterministic": "1",
872
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
873
            "http_proxy": "",
874 875
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
876 877 878
        }

        if check_error_log:
879
            required_envs["GLOG_vmodule"] = \
880 881
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
882
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,nccl_helper=10,grpc_client=10,grpc_server=10"
883 884
            required_envs["GLOG_logtostderr"] = "1"

885 886 887 888 889 890 891 892 893 894 895
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
896
        local_losses \
897
            = self._run_local(model_file, required_envs,
898 899
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
900
        if self._nccl2_mode:
W
Wu Yi 已提交
901 902
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
903 904 905 906 907
                    model_file,
                    required_envs,
                    True,
                    check_error_log,
                    log_name=log_name)
W
Wu Yi 已提交
908 909
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
910 911 912 913 914
                    model_file,
                    required_envs,
                    False,
                    check_error_log,
                    log_name=log_name)
W
Wu Yi 已提交
915 916
        else:
            tr0_losses, tr1_losses = self._run_cluster(
917
                model_file, required_envs, check_error_log, log_name=log_name)
918 919

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
920 921 922
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
Y
Yan Xu 已提交
923
            dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
924 925
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
                gpus="0,1")

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
                gpus="0,1")

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)