buffered_allocator_test.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/allocation/buffered_allocator.h"
#include <gtest/gtest.h>
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
#include "paddle/fluid/memory/allocation/locked_allocator.h"

namespace paddle {
namespace memory {
namespace allocation {

inline std::unique_ptr<BufferedAllocator> GetBufferedAllocator(
    Allocation *allocation, bool thread_safe) {
  std::unique_ptr<Allocator> allocator(new BestFitAllocator(allocation));
  if (thread_safe) {
    allocator.reset(new LockedAllocator(std::move(allocator)));
  }

  return std::unique_ptr<BufferedAllocator>(
      new BufferedAllocator(std::move(allocator)));
}

TEST(buffered_allocator, thread_safety) {
  std::unique_ptr<CPUAllocator> allocator(new CPUAllocator());
  auto chunk = allocator->Allocate(1 << 20);
  {
    auto buf_allocator = GetBufferedAllocator(chunk.get(), true);
    ASSERT_EQ(buf_allocator->IsAllocThreadSafe(), true);
  }

  {
    auto buf_allocator = GetBufferedAllocator(chunk.get(), false);
    ASSERT_EQ(buf_allocator->IsAllocThreadSafe(), false);
  }

  allocator->FreeUniquePtr(std::move(chunk));
}

class StubAllocation : public Allocation {
 public:
  using Allocation::Allocation;
};

class StubAllocator : public UnmanagedAllocator {
 public:
  std::unique_ptr<Allocation> Allocate(size_t size,
                                       Allocator::Attr attr) override {
    ++construct_count_;
    if (size == 0) {
      return std::unique_ptr<Allocation>(
          new StubAllocation(nullptr, 0, platform::CPUPlace()));
    } else {
      return std::unique_ptr<Allocation>(
          new StubAllocation(new uint8_t[size], size, platform::CPUPlace()));
    }
  }

  void FreeUniquePtr(std::unique_ptr<Allocation> allocation) {
    StubAllocation *alloc = dynamic_cast<StubAllocation *>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(alloc);
    if (alloc->ptr()) delete[] static_cast<uint8_t *>(alloc->ptr());
    ++destruct_count_;
  }

  void ResetCounter() {
    construct_count_ = 0;
    destruct_count_ = 0;
  }

  size_t GetAllocCount() const { return construct_count_; }

  size_t GetFreeCount() const { return destruct_count_; }

 private:
  size_t construct_count_ = 0;
  size_t destruct_count_ = 0;
};

constexpr size_t kZero = 0;
constexpr size_t kOne = 1;
constexpr size_t kTwo = 2;

TEST(buffered_allocator, lazy_free) {
  std::unique_ptr<StubAllocator> stub_allocator(new StubAllocator());
  auto *underlying_allocator = stub_allocator.get();
  std::unique_ptr<BufferedAllocator> allocator(
      new BufferedAllocator(std::move(stub_allocator)));

  {
    underlying_allocator->ResetCounter();
    auto x = allocator->Allocate(1025);
    ASSERT_EQ(underlying_allocator->GetAllocCount(), kOne);
    ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero);
    allocator->FreeUniquePtr(std::move(x));
    ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero);
  }

  {
    underlying_allocator->ResetCounter();
    auto x = allocator->Allocate(900);
    ASSERT_EQ(underlying_allocator->GetAllocCount(), kZero);
    ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero);
    auto y = allocator->Allocate(2048);
    ASSERT_EQ(underlying_allocator->GetAllocCount(), kOne);
    ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero);
    allocator->FreeUniquePtr(std::move(x));
    ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero);
    allocator->FreeUniquePtr(std::move(y));
    ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero);
  }

  {
    underlying_allocator->ResetCounter();
    allocator->Flush();
    ASSERT_EQ(underlying_allocator->GetAllocCount(), kZero);
    ASSERT_EQ(underlying_allocator->GetFreeCount(), kTwo);
  }
}

TEST(buffered_allocator, garbage_collection) {
  std::unique_ptr<CPUAllocator> cpu_allocator(new CPUAllocator());
  auto chunk = cpu_allocator->Allocate(2048);
  auto allocator = GetBufferedAllocator(chunk.get(), false);
  auto x1 = allocator->Allocate(1600);
  auto x2 = allocator->Allocate(400);
  allocator->FreeUniquePtr(std::move(x1));
  allocator->FreeUniquePtr(std::move(x2));
  auto x3 = allocator->Allocate(1600);
  ASSERT_NE(x3, nullptr);
  ASSERT_NE(x3->ptr(), nullptr);
}

}  // namespace allocation
}  // namespace memory
}  // namespace paddle