elementwise_op.cc 8.6 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22
class ElementwiseTensorOpConverter : public OpConverter {
N
nhzlx 已提交
23
 public:
24
  ElementwiseTensorOpConverter() {}
N
nhzlx 已提交
25
  void operator()(const framework::proto::OpDesc& op,
26 27 28
                  const framework::Scope& scope,
                  bool test_mode) override {
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
N
nhzlx 已提交
29 30
    framework::OpDesc op_desc(op, nullptr);
    auto* X = engine_->GetITensor(op_desc.Input("X").front());
31
    nvinfer1::ITensor* Y = nullptr;
N
nhzlx 已提交
32
    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
33 34 35 36
    if (Y_v) {
      // Y is weight
      auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
      std::vector<int> dims_y = phi::vectorize<int>(Y_t->dims());
37 38
      auto y_weight = engine_->GetTrtWeight(op_desc.Input("Y").front(), *Y_t);

39 40 41 42 43
      nvinfer1::Dims trt_dims_y;
      trt_dims_y.nbDims = dims_y.size();
      for (int i = 0; i < trt_dims_y.nbDims; i++) {
        trt_dims_y.d[i] = dims_y[i];
      }
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
      // this is the special case when dims_y includes batch dimension!
      // we need remove batch dimension!
      if (!engine_->with_dynamic_shape() &&
          trt_dims_y.nbDims == (X->getDimensions().nbDims + 1)) {
        trt_dims_y.nbDims--;
        PADDLE_ENFORCE_EQ(trt_dims_y.d[0],
                          1,
                          platform::errors::InvalidArgument(
                              "Elementwise type(%s) op's Y is a weight "
                              "including batch dimension. Please "
                              "check if the 0th dimension equals 1.",
                              op_type_));
        for (int i = 0; i < trt_dims_y.nbDims; i++) {
          trt_dims_y.d[i] = trt_dims_y.d[i + 1];
        }
      }
60 61 62 63 64 65 66 67 68 69 70
      Y = TRT_ENGINE_ADD_LAYER(engine_, Constant, trt_dims_y, y_weight.get())
              ->getOutput(0);
    } else {
      Y = engine_->GetITensor(op_desc.Input("Y").front());
    }

    if (X->getDimensions().nbDims < Y->getDimensions().nbDims) {
      auto* tmp = X;
      X = Y;
      Y = tmp;
    }
71
    nvinfer1::Dims dims_x = X->getDimensions();
72 73
    nvinfer1::Dims dims_y = Y->getDimensions();
    auto output_name = op_desc.Output("Out")[0];
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    // axis here is relative to explicit batch
    int axis = BOOST_GET_CONST(int, op_desc.GetAttr("axis"));
    int real_x_rank = dims_x.nbDims;
    int real_y_rank = dims_y.nbDims;
    if (!engine_->with_dynamic_shape()) {
      real_x_rank++;
      real_y_rank++;
      if (Y_v) real_y_rank--;
    }
    if (axis == -1) {
      axis = real_x_rank - real_y_rank;
    }
    if (!engine_->with_dynamic_shape() && axis > 0) {
      axis--;
    }

    // X: - -  -    - - - -
    //        axis
    // Y:      -    - -
    // we need expand Y's rank = X's rank
    int left_one_num = axis;
    int right_one_num = dims_x.nbDims - axis - dims_y.nbDims;
    nvinfer1::IShuffleLayer* reshape_layer;
    nvinfer1::ITensor* reshape_y_tensor;
    if (left_one_num > 0 || right_one_num > 0) {
      if (engine_->with_dynamic_shape()) {
        auto* y_shape_tensor = Shape(Y);
        auto* new_y_shape_tensor = y_shape_tensor;
        if (axis > 0) {
          std::vector<int32_t> left_one(left_one_num, 1);
          auto* left_one_tensor = Add1DConstantLayer(left_one);
          new_y_shape_tensor = Concat(std::vector<nvinfer1::ITensor*>{
              left_one_tensor, new_y_shape_tensor});
S
shentanyue 已提交
108
        }
109 110 111 112 113
        if (right_one_num > 0) {
          std::vector<int32_t> right_one(right_one_num, 1);
          auto* right_one_tensor = Add1DConstantLayer(right_one);
          new_y_shape_tensor = Concat(std::vector<nvinfer1::ITensor*>{
              new_y_shape_tensor, right_one_tensor});
114
        }
115 116
        reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *Y);
        reshape_layer->setInput(1, *new_y_shape_tensor);
117
      } else {
118 119 120 121 122 123 124
        nvinfer1::Dims new_y_dims;
        new_y_dims.nbDims = left_one_num + dims_y.nbDims + right_one_num;
        for (int i = 0; i < new_y_dims.nbDims; i++) new_y_dims.d[i] = 1;
        for (int i = 0; i < dims_y.nbDims; i++)
          new_y_dims.d[left_one_num + i] = dims_y.d[i];
        reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *Y);
        reshape_layer->setReshapeDimensions(new_y_dims);
125
      }
126
      reshape_y_tensor = reshape_layer->getOutput(0);
N
nhzlx 已提交
127
    } else {
128 129 130
      // In fact , we can remove this `else`, but -> rt_resnet50_test CI in trt
      // 6015 faling, how ridiculous!
      reshape_y_tensor = Y;
N
nhzlx 已提交
131
    }
132

133
    auto op_pair = ops.find(op_type_);
134 135
    PADDLE_ENFORCE_NE(op_pair,
                      ops.end(),
136 137 138 139
                      platform::errors::InvalidArgument(
                          "Elementwise op's type(%s) is not supported. Please "
                          "check if the op_type is correct.",
                          op_type_));
140

141 142 143
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, ElementWise, *X, *reshape_y_tensor, op_pair->second);
    RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
N
nhzlx 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

202
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
203
                          ElementwiseTensorAddOpConverter);
204
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
205
                          ElementwiseTensorMulOpConverter);
S
shentanyue 已提交
206
REGISTER_TRT_OP_CONVERTER(elementwise_sub_weight,
207
                          ElementwiseTensorSubOpConverter);
S
shentanyue 已提交
208
REGISTER_TRT_OP_CONVERTER(elementwise_div_weight,
209
                          ElementwiseTensorDivOpConverter);
S
shentanyue 已提交
210
REGISTER_TRT_OP_CONVERTER(elementwise_pow_weight,
211
                          ElementwiseTensorPowOpConverter);
N
nhzlx 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);