sum_mkldnn_op.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*Licensed under the Apache License, Version 2.0(the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/operators/sum_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
T
tangwei12 已提交
40
using mkldnn::reorder;
41 42
using mkldnn::stream;
using mkldnn::sum;
T
tangwei12 已提交
43 44 45
using paddle::framework::Tensor;
using paddle::platform::CPUDeviceContext;
using paddle::platform::MKLDNNDeviceContext;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
using platform::to_void_cast;

template <typename T>
class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    auto in_vars = ctx.MultiInputVar("X");

    const int N = in_vars.size();
    auto out_var = ctx.OutputVar("Out");
    bool in_place = out_var == in_vars[0];

    if (out_var->IsType<framework::LoDTensor>()) {
      LoDTensor* output = ctx.Output<LoDTensor>("Out");
      T* output_data = output->mutable_data<T>(ctx.GetPlace());

66
      auto dst_tz = framework::vectorize<int>(output->dims());
67
      auto src_tz = dst_tz;
68
      MKLDNNMemoryFormat output_format{MKLDNNMemoryFormat::format_undef};
69 70 71 72
      std::vector<float> scales;
      std::vector<memory::primitive_desc> srcs_mpd;
      std::vector<mkldnn::memory> srcs_mem;

73 74
      PADDLE_ENFORCE_EQ(in_vars[0]->IsType<LoDTensor>(), true,
                        "Input[0] must be LoDTensors");
75
      auto& input0 = in_vars[0]->Get<LoDTensor>();
76 77 78 79
      PADDLE_ENFORCE_EQ(input0.layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for inputs[0] tensor");
      PADDLE_ENFORCE_NE(input0.format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for inputs[0] tensor");
80

81
      MKLDNNMemoryFormat input_format = input0.format();
82

83
      for (int i = 0; i < N; i++) {
84 85
        PADDLE_ENFORCE_EQ(in_vars[i]->IsType<LoDTensor>(), true,
                          "all inputs must be all LoDTensors");
86
        auto& input = in_vars[i]->Get<LoDTensor>();
87 88 89 90
        PADDLE_ENFORCE_EQ(input.layout(), DataLayout::kMKLDNN,
                          "Wrong layout set for inputs");
        PADDLE_ENFORCE_NE(input.format(), MKLDNNMemoryFormat::format_undef,
                          "Wrong format set for inputs");
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

        if (input.numel() == 0) {
          continue;
        }

        const T* input_data = input.data<T>();

        auto src_md =
            memory::desc(src_tz, memory::data_type::f32, input_format);
        auto src_mpd = memory::primitive_desc(src_md, mkldnn_engine);
        auto src_mem = memory(src_mpd, to_void_cast(input_data));
        srcs_mpd.push_back(src_mpd);
        srcs_mem.push_back(src_mem);
        scales.push_back(1.0);
      }

      auto dst_md =
108
          memory::desc(dst_tz, memory::data_type::f32, MKLDNNMemoryFormat::any);
109 110

      auto sum_pd = sum::primitive_desc(dst_md, scales, srcs_mpd);
111

112 113
      std::shared_ptr<memory> dst_mem;
      if (in_place) {
114
        dst_mem.reset(new memory(sum_pd.dst_primitive_desc()));
115
      } else {
116
        dst_mem.reset(new memory(sum_pd.dst_primitive_desc(), output_data));
117 118 119 120 121 122 123
      }
      std::vector<mkldnn::primitive::at> inputs;
      for (size_t i = 0; i < srcs_mem.size(); ++i) {
        inputs.push_back(srcs_mem[i]);
      }

      auto sum_prim = mkldnn::sum(sum_pd, inputs, *dst_mem);
124
      output_format = (MKLDNNMemoryFormat)platform::GetMKLDNNFormat(sum_pd);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

      primitive reorder_prim;
      std::shared_ptr<memory> target_mem;
      if (in_place) {
        output_format = input_format;
        target_mem.reset(new memory(
            {{{src_tz}, memory::data_type::f32, output_format}, mkldnn_engine},
            output_data));
        reorder_prim = reorder(*dst_mem, *target_mem);
      }

      std::vector<primitive> pipeline;
      pipeline.push_back(sum_prim);
      if (in_place) pipeline.push_back(reorder_prim);
      stream(stream::kind::eager).submit(pipeline).wait();

141 142
      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(output_format);
143 144 145
    } else {  // Fallback to naive version
      SumKernel<CPUDeviceContext, T> reference_kernel;
      reference_kernel.Compute(ctx);
146 147 148 149 150 151 152 153 154
    }
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_KERNEL(sum, MKLDNN, ::paddle::platform::CPUPlace,
                   paddle::operators::SumMKLDNNOpKernel<float>);