test_hooks.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <set>
#include <string>
#include <vector>

#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/hooks.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"

namespace platform = paddle::platform;
namespace framework = paddle::framework;
namespace memory = paddle::memory;

DECLARE_bool(sort_sum_gradient);

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;
using var_pair = std::pair<std::string, vb_vector>;

TEST(TestHooks, TestGradVarLeafBackwardHook) {
  // 1. prepare
  Tracer tracer;
  std::shared_ptr<VarBase> x(new VarBase(true, "x"));
  std::shared_ptr<VarBase> y(new VarBase(true, "y"));
  std::shared_ptr<VarBase> out(new VarBase(true, "out"));
  x->SetOverridedStopGradient(false);
  y->SetOverridedStopGradient(false);

  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> x_dims = {2, 5};
  std::vector<int64_t> y_dims = {5, 2};

  auto* x_tensor = x->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_tensor = y->MutableVar()->GetMutable<framework::LoDTensor>();

  x_tensor->Resize(framework::make_ddim(x_dims));
  auto* mutable_x = x_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_x, place, src_data.data(),
               sizeof(float) * src_data.size());

  y_tensor->Resize(framework::make_ddim(y_dims));
  auto* mutable_y = y_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_y, place, src_data.data(),
               sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x));
  var_pair y_pair = var_pair("Y", vb_vector(1, y));
  var_pair out_pair = var_pair("Out", vb_vector(1, out));

  NameVarBaseMap ins = {x_pair, y_pair};
  NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;

  // add GradAccumulatorPostHook
  auto x_var_wrapper = x->SharedVar();
  x_var_wrapper->AddGradVarLeafBackwardHook(
      std::unique_ptr<LambdaGradAccumulatorPostHook>(
          new LambdaGradAccumulatorPostHook([=](VariableWrapper* grad) {
            auto* grad_tensor =
                grad->MutableVar()->GetMutable<framework::LoDTensor>();
            for (int i = 0; i < grad_tensor->numel(); ++i) {
              grad_tensor->mutable_data<float>(place)[i] *= 2.0;
            }
          })));

  // 2. forward
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);

  ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(out->GradVarBase()->GradOpNum(), 1UL);

  // 3. backward
  BasicEngine engine;
  engine.Init(out.get());
  engine.Execute();

  framework::LoDTensor x_grad;
  framework::TensorCopySync(x->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);
  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 8.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }
}

void GradVarLeafBackwardHookWithGradAccmulatedTest() {
  // 1. prepare
  Tracer tracer;
  std::shared_ptr<VarBase> x(new VarBase(true, "x"));
  std::shared_ptr<VarBase> y(new VarBase(true, "y"));
  std::shared_ptr<VarBase> z(new VarBase(true, "z"));
  std::shared_ptr<VarBase> out_xy(new VarBase(true, "out_xy"));
  std::shared_ptr<VarBase> out_xz(new VarBase(true, "out_xz"));
  std::shared_ptr<VarBase> out(new VarBase(true, "out"));
  x->SetOverridedStopGradient(false);
  y->SetOverridedStopGradient(false);
  z->SetOverridedStopGradient(false);

  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> x_dims = {2, 5};
  std::vector<int64_t> y_dims = {5, 2};
  std::vector<int64_t> z_dims = {5, 2};

  auto* x_tensor = x->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_tensor = y->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* z_tensor = z->MutableVar()->GetMutable<framework::LoDTensor>();

  x_tensor->Resize(framework::make_ddim(x_dims));
  auto* mutable_x = x_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_x, place, src_data.data(),
               sizeof(float) * src_data.size());

  y_tensor->Resize(framework::make_ddim(y_dims));
  auto* mutable_y = y_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_y, place, src_data.data(),
               sizeof(float) * src_data.size());

  z_tensor->Resize(framework::make_ddim(z_dims));
  auto* mutable_z = z_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_z, place, src_data.data(),
               sizeof(float) * src_data.size());

  // add GradAccumulatorPostHook
  auto x_var_wrapper = x->SharedVar();
  x_var_wrapper->AddGradVarLeafBackwardHook(
      std::unique_ptr<LambdaGradAccumulatorPostHook>(
          new LambdaGradAccumulatorPostHook([=](VariableWrapper* grad) {
            auto* grad_tensor =
                grad->MutableVar()->GetMutable<framework::LoDTensor>();
            for (int i = 0; i < grad_tensor->numel(); ++i) {
              grad_tensor->mutable_data<float>(place)[i] *= 2.0;
            }
          })));

  // 2. forward
  var_pair x_pair = var_pair("X", vb_vector(1, x));
  var_pair y_pair = var_pair("Y", vb_vector(1, y));
  var_pair out_xy_pair = var_pair("Out", vb_vector(1, out_xy));
  NameVarBaseMap ins = {x_pair, y_pair};
  NameVarBaseMap outs = {out_xy_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);

  var_pair z_pair = var_pair("Y", vb_vector(1, z));
  var_pair out_xz_pair = var_pair("Out", vb_vector(1, out_xz));
  ins = {x_pair, z_pair};
  outs = {out_xz_pair};
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);

  var_pair xy_pair = var_pair("X", vb_vector(1, out_xy));
  var_pair xz_pair = var_pair("Y", vb_vector(1, out_xz));
  var_pair out_pair = var_pair("Out", vb_vector(1, out));
  ins = {xy_pair, xz_pair};
  outs = {out_pair};
  framework::AttributeMap add_attr_map;
  tracer.TraceOp("elementwise_add", ins, outs, add_attr_map, place, true);

  ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(z->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(out->GradVarBase()->GradOpNum(), 1UL);

  // 3. backward
  BasicEngine engine;
  engine.Init(out.get());
  engine.Execute();

  framework::LoDTensor x_grad;
  framework::TensorCopySync(x->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);
  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 16.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }

  framework::LoDTensor z_grad;
  framework::TensorCopySync(z->GradVar().Get<framework::LoDTensor>(), place,
                            &z_grad);

  for (int i = 0; i < z_grad.numel(); ++i) {
    ASSERT_EQ(z_grad.data<float>()[i], 4.0);
  }
}

TEST(TestHooks, TestGradVarLeafBackwardHookWithGradAccmulated) {
  GradVarLeafBackwardHookWithGradAccmulatedTest();
}

TEST(TestHooks, TestGradVarLeafBackwardHookWithSortedGradAccmulated) {
  FLAGS_sort_sum_gradient = true;
  GradVarLeafBackwardHookWithGradAccmulatedTest();
  FLAGS_sort_sum_gradient = false;
}

}  // namespace imperative
}  // namespace paddle

USE_OP(mul);
USE_OP(mul_grad);
USE_OP(elementwise_add);
USE_OP(elementwise_add_grad);