recompute.py 22.0 KB
Newer Older
J
JZ-LIANG 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
J
JZ-LIANG 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
J
JZ-LIANG 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
J
JZ-LIANG 已提交
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid import core
17 18
from paddle.autograd import PyLayer
from paddle.autograd.py_layer import LegacyPyLayer
S
ShenLiang 已提交
19

J
JZ-LIANG 已提交
20 21
from paddle.fluid import framework
import contextlib
S
ShenLiang 已提交
22
from paddle.fluid.framework import in_dygraph_mode
J
JZ-LIANG 已提交
23 24

import logging
R
Roc 已提交
25
from ..utils.log_util import logger
J
JZ-LIANG 已提交
26

27 28
__all__ = []

J
JZ-LIANG 已提交
29 30 31 32

def detach_variable(inputs):
    out = []
    for inp in inputs:
S
ShenLiang 已提交
33
        if not isinstance(inp, (core.eager.Tensor, core.VarBase)):
J
JZ-LIANG 已提交
34 35 36 37 38 39 40 41 42 43 44
            out.append(inp)
            continue

        x = inp.detach()
        x.stop_gradient = inp.stop_gradient
        out.append(x)
    return tuple(out)


def check_recompute_necessary(inputs):
    if not any(input_.stop_gradient == False for input_ in inputs
S
ShenLiang 已提交
45
               if isinstance(input_, (core.eager.Tensor, paddle.Tensor))):
R
Roc 已提交
46
        logger.warning(
J
JZ-LIANG 已提交
47 48 49 50 51
            "[Recompute]: None of the inputs to current recompute block need grad, "
            "therefore there is NO need to recompute this block in backward !")


@contextlib.contextmanager
52 53
def swith_rng_state_tracker(rng_state, tracker):
    from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
J
JZ-LIANG 已提交
54
    orig_cuda_rng_state = paddle.get_cuda_rng_state()
55 56
    orig_cuda_rng_tracker = get_rng_state_tracker().get_states_tracker()

J
JZ-LIANG 已提交
57
    paddle.set_cuda_rng_state(rng_state)
58
    get_rng_state_tracker().set_states_tracker(tracker)
J
JZ-LIANG 已提交
59 60 61 62
    try:
        yield
    finally:
        paddle.set_cuda_rng_state(orig_cuda_rng_state)
63
        get_rng_state_tracker().set_states_tracker(orig_cuda_rng_tracker)
J
JZ-LIANG 已提交
64 65


66
class LegacyRecomputeFunction(LegacyPyLayer):
67

S
ShenLiang 已提交
68 69
    @staticmethod
    def forward(ctx, run_function, preserve_rng_state, *args):
70
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
S
ShenLiang 已提交
71

72
        # store for recomputing
S
ShenLiang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        ctx.run_function = run_function
        ctx.preserve_rng_state = preserve_rng_state

        # NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
        # the order of tensors in backward()'s output should be the same as tensors in forward()'s input
        # None tensor inputs will be filtered in backward inputs.

        # save input for backward
        ctx.inputs = []
        ctx.tensor_indices = []
        tensor_inputs = []
        for i, arg in enumerate(args):
            if paddle.is_tensor(arg):
                tensor_inputs.append(arg)
                ctx.tensor_indices.append(i)
                ctx.inputs.append(None)
            else:
                ctx.inputs.append(arg)
        ctx.save_for_backward(*tensor_inputs)

        # NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
        # one process with multiple gpu and mix-gpu-cpu senarios are not support
        if ctx.preserve_rng_state:
            cur_device = paddle.get_device()
            if 'gpu:' not in cur_device:
                raise RuntimeError(
99 100
                    "Recompute with RNG perserve is not support current device: {}."
                    .format(cur_device))
S
ShenLiang 已提交
101
            ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state()
102 103
            ctx.fwd_cuda_rng_state_tracker = get_rng_state_tracker(
            ).get_states_tracker()
S
ShenLiang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

        # TODO support AMP
        tracer = framework._dygraph_tracer()
        ctx.is_fw_autocast = False if tracer._amp_level == core.AmpLevel.O0 else True
        if tracer._amp_level == core.AmpLevel.O2:
            ctx.amp_level = 'O2'
        elif tracer._amp_level in (core.AmpLevel.O1, core.AmpLevel.O0):
            ctx.amp_level = 'O1'
        else:
            raise ValueError("unsupported amp level: {}".format(
                tracer._amp_level))

        if tracer._amp_dtype == 'float16':
            ctx.amp_dtype = 'float16'
        elif tracer._amp_dtype in ('bfloat16', 'float32'):
            ctx.amp_dtype = 'bfloat16'
        else:
            raise ValueError("unsupported amp dtype: {}".format(
                tracer._amp_dtype))

        ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list()

        with paddle.no_grad():
            outputs = run_function(*args)
        return outputs

    @staticmethod
    def backward(ctx, *args):
132
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
S
ShenLiang 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        with paddle.fluid.dygraph.guard():
            # TODO need to check the recompute calling is vaild or not

            # Restore inputs
            inputs = list(ctx.inputs)
            tensor_indices = ctx.tensor_indices
            tensors = ctx.saved_tensor()
            for i, idx in enumerate(tensor_indices):
                inputs[idx] = tensors[i]

            # paddle.enable_grad()
            tracer = framework._dygraph_tracer()
            tracer._has_grad = True

            # NOTE support AMP
            # need restore auto_cast state as well as w/b list
            if ctx.preserve_rng_state:
150 151
                with swith_rng_state_tracker(ctx.fw_cuda_rng_state,
                                             ctx.fwd_cuda_rng_state_tracker):
S
ShenLiang 已提交
152 153 154 155 156 157 158 159 160
                    with paddle.amp.auto_cast(
                            enable=ctx.is_fw_autocast,
                            custom_white_list=ctx.amp_white_list,
                            custom_black_list=ctx.amp_black_list,
                            level=ctx.amp_level,
                            dtype=ctx.amp_dtype):
                        detached_inputs = detach_variable(tuple(inputs))
                        outputs = ctx.run_function(*detached_inputs)
            else:
161 162 163 164 165
                with paddle.amp.auto_cast(enable=ctx.is_fw_autocast,
                                          custom_white_list=ctx.amp_white_list,
                                          custom_black_list=ctx.amp_black_list,
                                          level=ctx.amp_level,
                                          dtype=ctx.amp_dtype):
S
ShenLiang 已提交
166 167 168
                    detached_inputs = detach_variable(tuple(inputs))
                    outputs = ctx.run_function(*detached_inputs)

169
            if isinstance(outputs, core.VarBase):
S
ShenLiang 已提交
170 171 172 173 174 175
                outputs = (outputs, )
            assert len(outputs) == len(args)

            # run backward() with only tensor that requires grad
            forward_outputs_with_grad = []
            # NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
176
            # pylayer will force the stop_gradient of attention mask to be False, which will make the number of
S
ShenLiang 已提交
177 178 179 180
            # tensor that need grad does not match.
            # the following backward_inputs_with_grad is used to avoid this case.
            backward_inputs_with_grad = []
            for i in range(len(outputs)):
181 182
                if isinstance(outputs[i],
                              core.VarBase) and not outputs[i].stop_gradient:
S
ShenLiang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195
                    forward_outputs_with_grad.append(outputs[i])
                    backward_inputs_with_grad.append(args[i])

            if len(forward_outputs_with_grad) == 0:
                raise RuntimeError(
                    "none of output has requires_grad=True, this recompute() is not necessary"
                )

            # actually backward
            with paddle.amp.auto_cast(enable=False):
                paddle.autograd.backward(forward_outputs_with_grad,
                                         backward_inputs_with_grad)

196 197
            grads = list(inp._grad_ivar() for inp in detached_inputs
                         if isinstance(inp, core.VarBase))
S
ShenLiang 已提交
198 199 200
            return grads


J
JZ-LIANG 已提交
201
class RecomputeFunction(PyLayer):
202

J
JZ-LIANG 已提交
203
    @staticmethod
204
    def forward(ctx, run_function, preserve_rng_state, *args, **kwargs):
205
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
J
JZ-LIANG 已提交
206

207
        # store for recomputing
J
JZ-LIANG 已提交
208 209
        ctx.run_function = run_function
        ctx.preserve_rng_state = preserve_rng_state
210
        ctx.kwargs = kwargs
J
JZ-LIANG 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

        # NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
        # the order of tensors in backward()'s output should be the same as tensors in forward()'s input
        # None tensor inputs will be filtered in backward inputs.

        # save input for backward
        ctx.inputs = []
        ctx.tensor_indices = []
        tensor_inputs = []
        for i, arg in enumerate(args):
            if paddle.is_tensor(arg):
                tensor_inputs.append(arg)
                ctx.tensor_indices.append(i)
                ctx.inputs.append(None)
            else:
                ctx.inputs.append(arg)
        ctx.save_for_backward(*tensor_inputs)

        # NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
        # one process with multiple gpu and mix-gpu-cpu senarios are not support
        if ctx.preserve_rng_state:
            cur_device = paddle.get_device()
            if 'gpu:' not in cur_device:
                raise RuntimeError(
235 236
                    "Recompute with RNG perserve is not support current device: {}."
                    .format(cur_device))
J
JZ-LIANG 已提交
237
            ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state()
238 239
            ctx.fwd_cuda_rng_state_tracker = get_rng_state_tracker(
            ).get_states_tracker()
J
JZ-LIANG 已提交
240 241

        # TODO support AMP
242
        tracer = framework._dygraph_tracer()
243 244 245 246 247
        ctx.is_fw_autocast = False if tracer._amp_level == core.AmpLevel.O0 else True
        if tracer._amp_level == core.AmpLevel.O2:
            ctx.amp_level = 'O2'
        elif tracer._amp_level in (core.AmpLevel.O1, core.AmpLevel.O0):
            ctx.amp_level = 'O1'
248
        else:
249 250
            raise ValueError("unsupported amp level: {}".format(
                tracer._amp_level))
251 252 253 254 255 256 257 258 259

        if tracer._amp_dtype == 'float16':
            ctx.amp_dtype = 'float16'
        elif tracer._amp_dtype in ('bfloat16', 'float32'):
            ctx.amp_dtype = 'bfloat16'
        else:
            raise ValueError("unsupported amp dtype: {}".format(
                tracer._amp_dtype))

260
        ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list()
J
JZ-LIANG 已提交
261 262

        with paddle.no_grad():
263
            outputs = run_function(*args, **kwargs)
J
JZ-LIANG 已提交
264 265 266 267
        return outputs

    @staticmethod
    def backward(ctx, *args):
268
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
J
JZ-LIANG 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282
        with paddle.fluid.dygraph.guard():
            # TODO need to check the recompute calling is vaild or not

            # Restore inputs
            inputs = list(ctx.inputs)
            tensor_indices = ctx.tensor_indices
            tensors = ctx.saved_tensor()
            for i, idx in enumerate(tensor_indices):
                inputs[idx] = tensors[i]

            # paddle.enable_grad()
            tracer = framework._dygraph_tracer()
            tracer._has_grad = True

283 284
            # NOTE support AMP
            # need restore auto_cast state as well as w/b list
J
JZ-LIANG 已提交
285
            if ctx.preserve_rng_state:
286 287
                with swith_rng_state_tracker(ctx.fw_cuda_rng_state,
                                             ctx.fwd_cuda_rng_state_tracker):
288 289 290
                    with paddle.amp.auto_cast(
                            enable=ctx.is_fw_autocast,
                            custom_white_list=ctx.amp_white_list,
291
                            custom_black_list=ctx.amp_black_list,
292 293
                            level=ctx.amp_level,
                            dtype=ctx.amp_dtype):
294
                        detached_inputs = detach_variable(tuple(inputs))
295 296
                        outputs = ctx.run_function(*detached_inputs,
                                                   **ctx.kwargs)
297
            else:
298 299 300 301 302
                with paddle.amp.auto_cast(enable=ctx.is_fw_autocast,
                                          custom_white_list=ctx.amp_white_list,
                                          custom_black_list=ctx.amp_black_list,
                                          level=ctx.amp_level,
                                          dtype=ctx.amp_dtype):
J
JZ-LIANG 已提交
303
                    detached_inputs = detach_variable(tuple(inputs))
304
                    outputs = ctx.run_function(*detached_inputs, **ctx.kwargs)
J
JZ-LIANG 已提交
305

306
            if isinstance(outputs, (core.VarBase, core.eager.Tensor)):
J
JZ-LIANG 已提交
307 308 309 310 311
                outputs = (outputs, )
            assert len(outputs) == len(args)

            # run backward() with only tensor that requires grad
            forward_outputs_with_grad = []
312
            # NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
313
            # pylayer will force the stop_gradient of attention mask to be False, which will make the number of
314 315 316
            # tensor that need grad does not match.
            # the following backward_inputs_with_grad is used to avoid this case.
            backward_inputs_with_grad = []
J
JZ-LIANG 已提交
317
            for i in range(len(outputs)):
318 319 320 321
                if isinstance(
                        outputs[i],
                    (core.VarBase,
                     core.eager.Tensor)) and not outputs[i].stop_gradient:
J
JZ-LIANG 已提交
322
                    forward_outputs_with_grad.append(outputs[i])
323 324
                    backward_inputs_with_grad.append(args[i])

J
JZ-LIANG 已提交
325 326 327 328 329
            if len(forward_outputs_with_grad) == 0:
                raise RuntimeError(
                    "none of output has requires_grad=True, this recompute() is not necessary"
                )

330 331 332 333
            # actually backward
            with paddle.amp.auto_cast(enable=False):
                paddle.autograd.backward(forward_outputs_with_grad,
                                         backward_inputs_with_grad)
J
JZ-LIANG 已提交
334

335 336 337 338 339 340 341 342
            if in_dygraph_mode():
                grads = tuple(
                    inp._grad_ivar() for inp in detached_inputs
                    if isinstance(inp, (core.VarBase, core.eager.Tensor)))
            else:
                grads = list(
                    inp._grad_ivar() for inp in detached_inputs
                    if isinstance(inp, (core.VarBase, core.eager.Tensor)))
J
JZ-LIANG 已提交
343 344 345 346 347 348 349
            return grads


def recompute(function, *args, **kwargs):
    """
    recompute intermediate activations to save then memory.

350
    Parameters:
351 352 353 354 355 356 357
        function(paddle.nn.Layer): layer of sequence of layers that describes part of forward pass of the model
              whose intermediate activations will be released to save memory in forward stage and will be recomputed
              in backward stage for gradient calculation.
        *args(Tensor): inputs to the function.
        **kwargs(Dict): Kwargs should only contain the key-value pair of preserve_rng_state, which is used to
              indicate whether to save the forward rng. If it is True, then the last forward rng value will be
              restored when the forward recalculation of backpropagation is performed. The default
358
              preserve_rng_state is True.
J
JZ-LIANG 已提交
359 360

    Returns:
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        Output of function on args.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed.fleet.utils import recompute
            import random

            # required: gpu

            def get_fc_block(block_idx, input_size, is_last=False):
                block_name = "block_" + str(block_idx)
                block = paddle.nn.Sequential(
                    (block_name + "_fc_0", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_dropout", paddle.nn.Dropout(p=0.5)),
                    (block_name + "_relu_1", paddle.nn.ReLU()),
                    (block_name + "_fc_1", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_relu_2", paddle.nn.ReLU()),
                )
                if is_last:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(
                            input_size, 1, bias_attr=False
                        )
                    )
                else:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(input_size, input_size, bias_attr=False)
                    )

                return block


            class Naive_fc_net(paddle.nn.Layer):
                def __init__(self, input_size=10,
                            recompute_blocks=[1, 3],
                            recompute_kwargs={}):
                    super(Naive_fc_net, self).__init__()
                    self.recompute_blocks = recompute_blocks
                    self.recompute_kwargs = recompute_kwargs
                    self.runfunc0 = get_fc_block(0, input_size, is_last=False)
                    self.runfunc1 = get_fc_block(1, input_size, is_last=False)
                    self.runfunc2 = get_fc_block(2, input_size, is_last=False)
                    self.runfunc3 = get_fc_block(3, input_size, is_last=False)
                    self.runfunc4 = get_fc_block(4, input_size, is_last=True)
                    self.total_func = [self.runfunc0, self.runfunc1, self.runfunc2, self.runfunc3, self.runfunc4]

                def forward(self, inputs):
                    nums = len(self.total_func)
                    for i in range(nums):
                        if i in self.recompute_blocks:
                            inputs = recompute(self.total_func[i], inputs, **{"preserve_rng_state": True})
                        else:
                            inputs = self.total_func[i](inputs)
                    return inputs

            def run_model(cuda_state, recompute_block=[], recompute_kwargs={}):
                gen = paddle.seed(10)
                gen.manual_seed(10)
                np.random.seed(10)
                random.seed(10)
                if cuda_state:
                    paddle.set_cuda_rng_state(cuda_state)

                batch_size, input_size = 1, 10
                model = Naive_fc_net(
                    input_size,
                    recompute_blocks=recompute_block,
                    recompute_kwargs=recompute_kwargs)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                loss_ = []
                param_ = []
                grad_ = []
                for _ in range(5):
                    x_data = np.random.randn(batch_size, input_size).astype(np.float32)
                    x = paddle.to_tensor(x_data)
                    y_pred = model(x)
                    loss = y_pred.mean()
                    loss_.append(np.asarray(loss).tolist())
                    loss.backward()
                    optimizer.step()
                    param_.append(np.asarray(model.parameters()[9]).tolist())
                    grad_.append(np.asarray(model.parameters()[3]._grad_ivar()).tolist())
                    optimizer.clear_grad()

                return loss_, param_, grad_

            cuda_state = paddle.get_cuda_rng_state()
            # without recompute
            loss_ref, param_ref, grad_ref = run_model(
                cuda_state, recompute_block=[]
            )

            loss, param, grad = run_model(cuda_state, recompute_block=[1, 2])
            print("normal_loss: {}, recompute_loss: {}".format(loss_ref, loss))
            # The result of the recompute_loss should be the same as the normal_loss.

J
JZ-LIANG 已提交
462 463 464 465
    """
    # Hack to mix *args with **kwargs in a python 2.7-compliant way
    preserve = kwargs.pop('preserve_rng_state', True)

466 467 468
    if framework._dygraph_tracer()._has_grad:
        check_recompute_necessary(args)

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    return RecomputeFunction.apply(function, preserve, *args, **kwargs)


def recompute_sequential(ctx, functions, *args, **kwargs):
    """
    recompute intermediate activations to save then memory for 'Sequential' models.

    Parameters:
        ctx(dict): include 'segments' and  'preserve_rng_state' keys, the key 'segments' (int, default 1), represents the number of chunks to create in the model,
                   the key 'preserve_rng_state' (bool, optional, default=True) indicate whether to save the forward rng. If it is True, then the last forward rng value will be
                   restored when the forward recalculation of backpropagation is performed. and some keys such as 'mp_group', 'offload' and 'partition' are invalid here,
                   they are useful in 'recompute_hybrid' API.
        functions(paddle.nn.Sequential): layer of sequence of layers that describes part of forward pass of the model
              whose intermediate activations will be released to save memory in forward stage and will be recomputed
              in backward stage for gradient calculation.
        *args(Tensor): inputs(tuple) to the function.
        **kwargs(Dict): inputs(dict) to the function.

    Returns:
        Output of function on args and kwargs.

    Examples:
        .. code-block:: python

            model = paddle.nn.Sequential(...)
            input = recompute_sequential({'segments' : 1}, model, input)
    """
    segments = ctx.get('segments', 1)
    preserve_rng_state = ctx.get('preserve_rng_state', True)

    def _run_func(begin, end, funcs):

        def do_run(input):
            for i in range(begin, end + 1):
                input = funcs[i](input)
            return input

        return do_run

    if isinstance(functions, paddle.nn.Sequential):
        functions = list(functions.children())

    segment_size = len(functions) // segments

    end = -1
    for begin in range(0, segment_size * (segments - 1), segment_size):
        end = begin + segment_size - 1
        args = recompute(_run_func(begin, end, functions),
                         *args,
                         preserve_rng_state=preserve_rng_state,
                         **kwargs)
    return _run_func(end + 1, len(functions) - 1, functions)(args)