fleet.py 51.9 KB
Newer Older
W
wuhuachaocoding 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import paddle
17
import os
18
from types import MethodType
19
import numpy as np
W
wuhuachaocoding 已提交
20
from paddle.fluid.framework import _global_flags
21
from paddle.fluid import compiler
W
wuhuachaocoding 已提交
22 23 24 25 26
from .base.role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
from .base.strategy_compiler import StrategyCompiler
from .base.distributed_strategy import DistributedStrategy
from .base.meta_optimizer_factory import MetaOptimizerFactory
from .base.runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29
from paddle.fluid.ir import apply_build_strategy
W
wuhuachaocoding 已提交
30 31
from .base import topology as tp
from .meta_parallel import model_parallel_random_seed
32
from paddle import _C_ops, _legacy_C_ops
33
from paddle.fluid import core
R
Roc 已提交
34 35
from .utils.log_util import logger, set_log_level
import logging
36

37 38
__all__ = []

39

40 41 42 43 44 45 46 47 48 49 50 51 52 53
def apply_ir_passes(main_program, startup_program, config):
    build_strategy = config._user_defined_strategy.build_strategy._copy()
    if not _global_flags()['FLAGS_apply_pass_to_program']:
        return build_strategy

    pipeline_opt = getattr(main_program, "_pipeline_opt", {})
    if pipeline_opt:
        main_program = pipeline_opt["section_program"]
        startup_program = startup_program._pipeline_opt["startup_program"]

    pass_attrs = {"use_cuda": config._is_collective}
    fuse_all_reduce = config._user_defined_strategy.fuse_all_reduce_ops
    if fuse_all_reduce and build_strategy.fuse_all_optimizer_ops:
        # FIXME(zjl): currently, fuse_all_optimizer_ops
54 55 56 57
        # have conflict with fuse_all_reduce_ops because
        # RawProgramOptimizer also inserts coalesce_tensor
        # into program. These two procedures may conflict
        # in which vars are to be fused.
R
Roc 已提交
58
        logger.warning(
59 60 61 62 63 64 65 66
            'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.'
        )
        build_strategy.fuse_all_optimizer_ops = False

    return apply_build_strategy(main_program, startup_program, build_strategy,
                                pass_attrs)


67
def _inited_runtime_handler_(func):
68

69 70 71 72 73 74 75 76 77 78 79
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


80
def _is_non_distributed_check_(func):
81

82 83 84 85 86
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
R
Roc 已提交
87
            logger.warning(
88 89 90 91 92 93 94 95 96
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


97
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
98
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
99 100


101 102 103
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
104
    Please reference the https://github.com/PaddlePaddle/PaddleFleetX for details
105 106 107 108 109


    Returns:
        Fleet: A Fleet instance

110
    Example for collective training:
1
123malin 已提交
111

112 113
        .. code-block:: python

1
123malin 已提交
114 115
            import paddle
            paddle.enable_static()
116
            import paddle.distributed.fleet as fleet
117 118 119

            fleet.init(is_collective=True)

120 121 122
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
123 124 125 126 127 128 129 130

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
131 132
            import paddle
            paddle.enable_static()
133 134
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
135
            fleet.init(strategy=strategy)
136

137
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
138
            optimizer = fleet.distributed_optimizer(optimizer)
139

140 141
            if fleet.is_first_worker():
                print("this is first worker")
142

143 144
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
145

146 147 148
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
149

150 151
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
152

153 154 155
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
156 157


158 159 160
    """

    def __init__(self):
161
        self._role_maker = None
162
        self.strategy_compiler = None
163
        self._is_collective = False
164
        self._runtime_handle = None
D
Dong Daxiang 已提交
165 166
        self._util = None
        self._context = {}
W
wuhuachaocoding 已提交
167
        self.user_defined_optimizer = paddle.optimizer.Optimizer(0.0)
168

R
Roc 已提交
169 170 171 172 173
    def init(self,
             role_maker=None,
             is_collective=False,
             strategy=None,
             log_level="INFO"):
174 175 176
        """
        Initialize role_maker in Fleet.

177 178 179 180 181 182 183 184 185 186 187
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
188 189
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.
R
Roc 已提交
190 191
            log_level (Integer, String, optional): A ``Integer`` or ``String`` Variable determining how hight
                the logging level is. Default is "INFO".
192 193


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
216
                role = fleet.PaddleCloudRoleMaker()
217
                fleet.init(role)
218

219 220 221 222 223 224
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
225
                fleet.init(strategy=strategy)
226

R
Roc 已提交
227 228 229 230 231 232 233 234
        Examples5:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(log_level = "DEBUG")

235
        """
R
Roc 已提交
236 237 238

        set_log_level(log_level)

S
ShenLiang 已提交
239 240 241
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
242 243

        if role_maker is None:
244 245 246 247 248 249
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
250 251
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
252
        else:
253 254
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
255
                self._is_collective = role_maker._is_collective
256 257
            else:
                raise ValueError(
258 259
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}"
                    .format(type(role_maker)))
260
        self._role_maker._generate_role()
261

262 263 264
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

265
        self.strategy_compiler = StrategyCompiler()
266 267 268 269 270 271 272 273 274

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

J
Jiabin Yang 已提交
275
        if paddle.fluid.framework._non_static_mode():
276
            if self.worker_num() == 1:
277 278 279
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
280
                return
281
            if parallel_helper._is_parallel_ctx_initialized():
R
Roc 已提交
282
                logger.warning(
283 284
                    "The dygraph parallel environment has been initialized.")
            else:
285 286
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
R
Roc 已提交
287
                    logger.warning(
288 289 290 291 292 293
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
294
                paddle.distributed.init_parallel_env()
295

K
kuizhiqing 已提交
296 297 298 299 300 301
            # hybrid parallel not support for npu/xpu
            if self._user_defined_strategy.heter_ccl_mode == False:
                # init hybrid parallel environment in dygraph
                if tp._HYBRID_PARALLEL_GROUP is None:
                    self._init_hybrid_parallel_env()
                else:
R
Roc 已提交
302
                    logger.warning(
K
kuizhiqing 已提交
303 304
                        "The dygraph hybrid parallel environment has been initialized."
                    )
W
WangXi 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

            if tp._HYBRID_PARALLEL_GROUP is None: tp._CommunicateGroup()
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
            cg.set_comm_group('global', global_rank, global_world_size,
                              global_ring_id, global_ranks)

Y
Yuang Liu 已提交
321 322 323
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
324
            # hybrid group
Y
Yuang Liu 已提交
325 326 327 328 329 330 331 332 333 334
            if use_mp is False: return

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
                tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
335 336
                mp_degree_tensor_parallel = int(
                    tensor_parallel_configs['tensor_parallel_degree'])
Y
Yuang Liu 已提交
337 338 339

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
340

Y
Yuang Liu 已提交
341
            mp_degree = mp_degree_sharding if use_sharding else mp_degree_tensor_parallel
W
WangXi 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
                    idx for idx in global_ranks
                    if idx // mp_degree == mp_group_id
                ]
                cg.set_comm_group('model', mp_rank, mp_degree, mp_ring_id,
                                  mp_group_ranks)
W
wuhuachaocoding 已提交
355
        return self
356 357 358 359 360 361 362 363

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
364
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
365 366 367

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
J
JZ-LIANG 已提交
368
        assert self.sharding_degree >= 0, "sharding_degree should be greater or equal to 0"
369 370 371 372 373 374 375 376 377 378 379

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
J
JZ-LIANG 已提交
380 381 382 383 384
            hybrid_group_names=["data", "pipe", "sharding", "model"],
            dims=[
                self.dp_degree, self.pp_degree, self.sharding_degree,
                self.mp_degree
            ])
385 386 387

        self._hcg = tp.HybridCommunicateGroup(self._topology)

388 389 390 391 392 393 394 395
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

396 397 398 399 400 401 402 403
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

404 405 406 407 408 409 410
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
411

412 413 414 415 416 417 418 419
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

420
        """
421
        return self._role_maker._is_first_worker()
422 423 424 425 426 427 428

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
429 430 431 432

        Examples:

            .. code-block:: python
1
123malin 已提交
433

434 435 436 437
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

438
        """
439
        return self._role_maker._worker_index()
440 441 442 443 444 445 446

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
447

448
        Examples:
1
123malin 已提交
449

450 451 452 453 454 455
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

456
        """
457
        return self._role_maker._worker_num()
458

459 460 461 462 463 464 465 466 467 468 469 470
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

471 472 473 474 475 476 477
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
478 479

        Examples:
1
123malin 已提交
480

481 482 483 484 485 486
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

487
        """
488
        return self._role_maker._is_worker()
489

490 491 492
    def is_coordinator(self):
        return self._role_maker._is_coordinator()

493 494
    def worker_endpoints(self, to_string=False):
        """
495
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
496 497 498

        Returns:
            list/string: server endpoints
499 500

        Examples:
1
123malin 已提交
501

502 503 504 505 506 507
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

508 509
        """
        if to_string:
510
            return ",".join(self._role_maker._get_trainer_endpoints())
511
        else:
512
            return self._role_maker._get_trainer_endpoints()
513 514 515 516 517 518 519

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
520 521

        Examples:
1
123malin 已提交
522

523
            .. code-block:: python
1
123malin 已提交
524 525 526 527

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
528
        """
529
        return len(self._role_maker._get_pserver_endpoints())
530 531 532 533 534 535 536

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
537 538

        Examples:
1
123malin 已提交
539

540 541 542 543 544 545
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

546
        """
547
        return self._role_maker._server_index()
548 549 550 551 552 553 554

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
555 556

        Examples:
1
123malin 已提交
557

558 559 560 561 562 563
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

564
        """
565

566
        if to_string:
567
            return ",".join(self._role_maker._get_pserver_endpoints())
568
        else:
569
            return self._role_maker._get_pserver_endpoints()
570 571 572 573 574 575 576 577

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
578 579 580 581

        Examples:

            .. code-block:: python
1
123malin 已提交
582

583 584 585 586
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

587
        """
588 589
        return self._role_maker._is_server()

590 591
    def barrier_worker(self):
        """
592 593 594 595
        barrier all workers

        Returns:
            None
596
        """
597
        self._role_maker._barrier("worker")
598

599
    @is_non_distributed_check
600
    @inited_runtime_handler
601
    def init_worker(self, scopes=None):
602
        """
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

621
        """
622
        self._runtime_handle._init_worker(scopes)
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    @is_non_distributed_check
    @inited_runtime_handler
    def init_coordinator(self, scopes=None):
        """
        initialize coordinator node
        """
        self._runtime_handle._init_coordinator(scopes)

    def make_fl_strategy(self):
        self._runtime_handle._make_fl_strategy()

    @is_non_distributed_check
    @inited_runtime_handler
    def get_fl_client(self):
        """
        get worker(training node) ptr
        """
        return self._runtime_handle._worker

643
    @is_non_distributed_check
644
    @inited_runtime_handler
645
    def init_server(self, *args, **kwargs):
646
        """
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

666
        """
667
        self._runtime_handle._init_server(*args, **kwargs)
668

Z
zmxdream 已提交
669 670
    @is_non_distributed_check
    @inited_runtime_handler
T
Thunderbrook 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

689
                fleet.load_model("path", mode=0)
T
Thunderbrook 已提交
690 691

        """
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
        self._runtime_handle._load_persistables(path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_one_table(self, table_id, path, mode):
        """
        load fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_one_table(0, "path", mode=0)

        """
        self._runtime_handle._load_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_inference_model(self, path, mode):
        """
        load fleet inference model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_inference_model("path", mode=1)

        """
        self._runtime_handle._load_inference_model(path, mode)
T
Thunderbrook 已提交
743

744
    @is_non_distributed_check
745
    @inited_runtime_handler
746 747
    def run_server(self):
        """
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

766 767 768
        """
        self._runtime_handle._run_server()

769
    @is_non_distributed_check
770
    @inited_runtime_handler
771 772
    def stop_worker(self):
        """
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

790 791 792
        """
        self._runtime_handle._stop_worker()

Z
zmxdream 已提交
793 794
    @is_non_distributed_check
    @inited_runtime_handler
T
tangwei12 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

829 830 831 832
            self._runtime_handle._save_inference_model(executor, dirname,
                                                       feeded_var_names,
                                                       fetch_vars, None, True,
                                                       0)
T
tangwei12 已提交
833 834 835 836
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
837 838 839 840
            self._runtime_handle._save_persistables(executor,
                                                    dirname,
                                                    main_program=None,
                                                    mode=increment_mode)
T
tangwei12 已提交
841

Z
zmxdream 已提交
842 843
    @is_non_distributed_check
    @inited_runtime_handler
844 845 846 847 848 849
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
850 851
                             export_for_deployment=True,
                             mode=0):
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

872 873 874 875
        self._runtime_handle._save_inference_model(executor, dirname,
                                                   feeded_var_names,
                                                   target_vars, main_program,
                                                   export_for_deployment, mode)
876

Z
zmxdream 已提交
877 878
    @is_non_distributed_check
    @inited_runtime_handler
879
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
880 881
        """

1
123malin 已提交
882
        saves all persistable tensors from :code:`main_program` to
883 884
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
885 886
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
887 888 889
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
890
            executor(Executor): The executor to run for saving persistable tensors.
891 892 893 894 895
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
896
            main_program(Program, optional): The program whose persistbale tensors will
897 898 899 900 901 902 903 904 905 906
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
907 908
                import paddle
                paddle.enable_static()
909 910 911 912 913 914 915
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
916 917
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
918 919

        """
920 921
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
922

Z
zhaocaibei123 已提交
923 924 925 926 927
    @is_non_distributed_check
    @inited_runtime_handler
    def save_cache_model(self, dirname, **configs):
        return self._runtime_handle._save_cache_model(dirname, **configs)

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
    @is_non_distributed_check
    @inited_runtime_handler
    def check_save_pre_patch_done(self):
        return self._runtime_handle._check_save_pre_patch_done()

    @is_non_distributed_check
    @inited_runtime_handler
    def save_one_table(self, table_id, path, mode):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_one_table(0, "path", mode=0)

        """
        self._runtime_handle._save_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def save_dense_params(self,
                          executor,
                          dirname,
                          scope,
                          program,
                          var_names=None):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                import paddle
                place = paddle.fluid.CPUPlace()
                exe = paddle.fluid.Executor(place)

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_dense_params(exe, "path", scope=paddle.static.global_scope(), program=paddle.static.default_main_program())

        """
        self._runtime_handle._save_dense_params(executor, dirname, scope,
                                                program, var_names)

992
    def shrink(self, threshold=None):
993 994
        self._runtime_handle._shrink(threshold)

995
    def distributed_optimizer(self, optimizer, strategy=None):
996
        """
997 998 999 1000 1001 1002 1003
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
1004 1005 1006 1007 1008
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
1009

1010
        Returns:
1011
            Fleet: instance of fleet.
1012 1013

        Examples:
1014

1015
            .. code-block:: python
1016

1
123malin 已提交
1017
                import paddle
1018
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1019
                fleet.init(is_collective=True)
1020 1021 1022 1023
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

1024 1025
        """
        self.user_defined_optimizer = optimizer
1026

1027
        if strategy is not None:
T
tangwei12 已提交
1028
            if self._is_collective:
R
Roc 已提交
1029
                logger.warning(
T
tangwei12 已提交
1030 1031 1032 1033 1034
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
1035
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
1036 1037

        self._context = {}
S
ShenLiang 已提交
1038

1039 1040
        return self

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1058 1059
        """Return the real-time loss scaling factor.
        """
1060 1061 1062
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1123
        amp_optimizer = self._get_amp_optimizer()
1124
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1125

D
Dong Daxiang 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1153 1154 1155 1156 1157 1158 1159 1160 1161
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1162
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1163 1164 1165
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1166
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1167 1168
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1169
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1170 1171 1172 1173
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1174
            by minimize and a list of (param, grad) tensor pairs, param is
1175
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1176 1177
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1178 1179 1180
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1181

1182
            .. code-block:: python
1183

1184
                import paddle
1
123malin 已提交
1185
                paddle.enable_static()
1186
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1198

1
123malin 已提交
1199
                fleet.init(is_collective=True)
1200 1201 1202 1203
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1204

1205
                # for more examples, please reference https://github.com/PaddlePaddle/PaddleFleetX
1206 1207

        """
1208 1209 1210 1211
        if not isinstance(loss, list):
            return self._minimize_impl(loss, startup_program, parameter_list,
                                       no_grad_set)
        else:
J
Jiabin Yang 已提交
1212
            if paddle.fluid.framework._non_static_mode(
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
            ) or self._role_maker._is_non_distributed() or self._is_collective:
                raise ValueError("loss can be list only in PS mode")
            return self._minimize_losses_impl(loss, startup_program,
                                              parameter_list, no_grad_set)

    def _minimize_impl(self,
                       loss,
                       startup_program=None,
                       parameter_list=None,
                       no_grad_set=None):
D
Dong Daxiang 已提交
1223 1224 1225
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
J
Jiabin Yang 已提交
1226
        if paddle.fluid.framework._non_static_mode():
1227 1228
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1229
            self._context = context
1230 1231
            return target_opt.minimize(loss)

1232 1233
        # cache original feed forward program
        self.origin_main_program = loss.block.program
B
Baibaifan 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        # add distributed attr
        if not hasattr(self.origin_main_program, "distributed_info_"):
            setattr(self.origin_main_program, "distributed_info_", dict())
            self.origin_main_program.distributed_info_[
                "dp_degree"] = self._user_defined_strategy.sharding_configs[
                    "dp_degree"]
            self.origin_main_program.distributed_info_[
                "mp_degree"] = self._user_defined_strategy.sharding_configs[
                    "mp_degree"]
            self.origin_main_program.distributed_info_[
                "pp_degree"] = self._user_defined_strategy.sharding_configs[
                    "pp_degree"]
            self.origin_main_program.distributed_info_[
                "sharding_degree"] = self._user_defined_strategy.sharding_configs[
                    "sharding_degree"]

1250
        context["origin_main_program"] = self.origin_main_program
1251
        context["origin_main_programs"] = [self.origin_main_program]
1252
        context["loss"] = loss
1253 1254
        if startup_program == None:
            self.origin_startup_program = \
1255 1256
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1257 1258 1259
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1260

1261
        context["origin_startup_program"] = startup_program
1262
        context["origin_startup_programs"] = [startup_program]
1263
        context["role_maker"] = self._role_maker
1264

1265
        # Use the auto-parallel's routines instead
1266
        if self._user_defined_strategy.semi_auto or self._user_defined_strategy.auto_search:
W
wuhuachaocoding 已提交
1267
            from ..auto_parallel.parallelizer import AutoParallelizer
1268 1269 1270
            auto_parallelizer = AutoParallelizer(self)
            optimize_ops, params_grads, dist_startup_prog, dist_main_prog = auto_parallelizer.parallelize(
                loss, startup_program, parameter_list, no_grad_set)
1271

1272 1273
            return optimize_ops, params_grads, dist_startup_prog, dist_main_prog

1274 1275 1276 1277
        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1278

D
Dong Daxiang 已提交
1279 1280 1281
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1282 1283 1284 1285 1286 1287

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1288
        if copy_user_defined_strategy._is_strict_auto():
1289 1290
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1291
                opt._enable_strategy(copy_user_defined_strategy, context)
1292

1293 1294
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1295
        can_not_apply_optimizer_list = []
1296 1297 1298 1299
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1300
                                copy_user_defined_strategy)
1301 1302
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1303
            elif opt._can_apply() and opt._is_graph_out():
1304
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1305 1306
            else:
                can_not_apply_optimizer_list.append(opt)
1307
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1308
        meta_optimizer, graph_optimizer = \
1309 1310
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1311
                copy_user_defined_strategy, valid_optimizer_list,
1312
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1313

D
Dong Daxiang 已提交
1314
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1315 1316 1317
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
R
Roc 已提交
1318 1319 1320
        logger.debug("valid_strategy: " + str(context["valid_strategy"]))
        logger.debug("user_defined_strategy: " +
                     str(context["user_defined_strategy"]))
1321

1322 1323 1324 1325 1326 1327
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1328
        self._context = context
1329

D
Dong Daxiang 已提交
1330
        self.valid_strategy = valid_strategy
1331
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1332

1333 1334
        optimize_ops = []
        params_grads = []
1335

1336 1337 1338 1339 1340 1341 1342 1343
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
1344 1345 1346 1347
            return self.user_defined_optimizer.minimize(loss,
                                                        startup_program,
                                                        parameter_list,
                                                        no_grad_set=no_grad_set)
1348

1349
        if meta_optimizer:
R
Roc 已提交
1350 1351
            logger.debug("before minimize program id: " +
                         str(id(loss.block.program)))
1352
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1353
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
R
Roc 已提交
1354 1355
            logger.debug("after minimize program id: " +
                         str(id(loss.block.program)))
1356
            default_program = paddle.static.default_main_program()
R
Roc 已提交
1357
            logger.debug("default program id: " + str(id(default_program)))
1358 1359 1360

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)
R
Roc 已提交
1361 1362
            logger.debug("default program id after switch: " +
                         str(id(default_program)))
1363

1364 1365
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1366
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1367

1368 1369
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1370

1371
        if graph_optimizer:
R
Roc 已提交
1372 1373
            logger.debug("before graph minimize program id: " +
                         str(id(loss.block.program)))
D
Dong Daxiang 已提交
1374
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1375
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1376 1377 1378 1379
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1380 1381
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads
1382 1383
        else:
            apply_ir_passes(loss.block.program, startup_program, self)
1384

1385 1386
        if not self._role_maker._is_heter_parameter_server_mode:
            program = paddle.static.default_main_program()
1387 1388 1389 1390 1391
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
            for k, v in self._user_defined_strategy.trainer_desc_configs.items(
            ):
1392
                if v or k not in opt_info:
1393
                    opt_info[k] = v
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
            program._fleet_opt = opt_info

        if self._runtime_handle is None:
            self._runtime_handle = RuntimeFactory()._create_runtime(context)

        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])

        return optimize_ops, params_grads

    def _minimize_losses_impl(self,
                              losses,
                              startup_programs=None,
                              parameter_list=None,
                              no_grad_set=None):
        context = {}

        # cache original feed forward program
        self.origin_main_program = losses[0].block.program
        context["origin_main_program"] = self.origin_main_program
        context["origin_main_programs"] = []
        for loss in losses:
            context["origin_main_programs"].append(loss.block.program)
        context["loss"] = losses

        if startup_programs is None:
            if len(losses) == 1:
                startup_programs = [paddle.static.default_startup_program()]
            else:
                raise ValueError(
                    "startup_program can't be None when loss is list.")
        self.origin_startup_program = startup_programs[0].clone(for_test=False)
        context["origin_startup_program"] = startup_programs[0]
        context["origin_startup_programs"] = []
        for program in startup_programs:
            context["origin_startup_programs"].append(program)

        context["role_maker"] = self._role_maker

        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)

        context["valid_strategy"] = copy.deepcopy(self._user_defined_strategy)

        self._context = context

        self.valid_strategy = context["valid_strategy"]
        self.valid_strategy._enable_env()

        optimize_ops = []
        params_grads = []

W
wuhuachaocoding 已提交
1446
        from .meta_optimizers import ParameterServerOptimizer
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
        ps_optimizer = ParameterServerOptimizer(self.user_defined_optimizer)
        ps_optimizer._set_basic_info(losses, self._role_maker,
                                     self.user_defined_optimizer,
                                     self._user_defined_strategy)
        optimize_ops, params_grads = ps_optimizer.minimize_losses_impl(
            losses, startup_programs, parameter_list, no_grad_set=no_grad_set)

        # default_program = paddle.static.default_main_program()

        # if id(default_program) != id(losses[0].block.program):
        #     paddle.fluid.framework.switch_main_program(losses[0].block.program)

        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads

        for loss in losses:
            program = loss.block.program
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
1465 1466 1467 1468
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
            for k, v in self._user_defined_strategy.trainer_desc_configs.items(
            ):
1469
                if v or k not in opt_info:
1470
                    opt_info[k] = v
1471
            program._fleet_opt = opt_info
R
Roc 已提交
1472 1473
            logger.debug("fleet base opt info: " + str(id(program)) +
                         str(program._fleet_opt))
1474

1475
        if self._runtime_handle is None:
1476
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1477

1478 1479
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1480 1481

        return optimize_ops, params_grads