“e4d7d7ae8fd7198447df21188d3fd85868c8bafa”上不存在“paddle/fluid/git@gitcode.net:paddlepaddle/Paddle.git”
manager.py 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import socket
import os
import six
19
import copy
20 21
import logging
import signal
K
kuizhiqing 已提交
22
import random
23 24
import threading
import traceback
25
import subprocess
26 27
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import launch_utils
28

R
Roc 已提交
29 30 31
from paddle.distributed.utils.log_utils import get_logger

logger = get_logger("INFO", "ELASTIC")
32 33

ELASTIC_EXIT_CODE = 101
34
ELASTIC_AUTO_PARALLEL_EXIT_CODE = 102
35

36 37 38 39 40 41 42 43 44 45 46 47
# wait for timeout, unit: seconds
ELASTIC_TIMEOUT = 2 * 60

# keepalived ttl, unit: seconds
ELASTIC_TTL = 60


# 1: Fault tolerance, 2: Elastic
class ElasticLevel:
    FAULT_TOLERANCE = 1
    ELASTIC = 2

48 49 50 51 52 53 54 55 56 57

class ElasticStatus:
    COMPLETED = "completed"
    ERROR = "error"
    HOLD = "hold"
    RESTART = "restart"
    EXIT = "exit"


class LauncherInterface(object):
58

59 60 61 62 63
    def __init__(self, args):
        self.args = args
        self.procs = []

    def _terminate_procs(self):
K
kuizhiqing 已提交
64
        # try to terminate process by group, this happend in multiprocess senario in user process
K
kuizhiqing 已提交
65 66 67 68 69 70 71 72
        if os.name != 'nt':
            for p in self.procs:
                if p.proc.poll() is None:
                    os.killpg(os.getpgid(p.proc.pid), signal.SIGTERM)
                    if p.log_fn:
                        p.log_fn.close()
                    logger.info("terminate process group gid:{}".format(
                        p.proc.pid))
K
kuizhiqing 已提交
73

K
kuizhiqing 已提交
74
            time.sleep(1)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        for p in self.procs:
            if p.proc.poll() is None:
                p.proc.terminate()
                if p.log_fn:
                    p.log_fn.close()
                logger.info("terminate process id:{}".format(p.proc.pid))

        for step in range(0, 50):
            alive = False
            for p in self.procs:
                if p.proc.poll() is None:  # not termniate
                    os.kill(p.proc.pid, signal.SIGKILL)
                    alive = True

            if not alive:
K
kuizhiqing 已提交
90
                logger.info("terminated all the procs")
91 92 93 94 95 96 97 98 99 100 101 102 103
                return True

            time.sleep(1)
        return False

    def _check_procs(self):
        alive = False
        result = None
        for p in self.procs:
            ret = p.proc.poll()
            if ret is None:
                alive = True
            elif ret != 0:
104 105 106
                if ret == ELASTIC_AUTO_PARALLEL_EXIT_CODE:
                    logger.info("return form elastic auto parallel re-launch")
                    return ret
K
kuizhiqing 已提交
107 108
                logger.error("ABORT!!! ABORT!!! ABORT!!!")
                logger.error(
109 110
                    "ERROR rank {} error with exit code {}, check log for detail."
                    .format(p.rank, ret))
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
                result = ret
        if not alive and result is None:
            return 0
        else:
            return result

    def launch(self):
        raise NotImplementedError

    def stop(self):
        raise NotImplementedError

    def watch(self):
        raise NotImplementedError


class ElasticManager(object):
128

129
    def __init__(self, args, etcd_client):
130 131 132 133

        self.args = args
        server = args.elastic_server or os.getenv('PADDLE_ELASTIC_SERVER')
        name = args.job_id or os.getenv('PADDLE_ELASTIC_JOB_ID')
134
        self.min_np, self.max_np = self._parse_np(args.np)
135 136 137 138
        host = args.host or os.getenv('POD_IP')
        scale = args.scale or int(os.getenv('PADDLE_ELASTIC_SCALE', 0))
        force = args.force or os.getenv('PADDLE_ELASTIC_FORCE')

139
        self.host = host if host else self._get_host()
140

141 142 143 144 145 146 147
        (self.device_mode,
         self.devices_per_proc) = launch_utils.get_device_proc_info(args)

        self.elastic_timeout = int(
            os.getenv('PADDLE_ELASTIC_TIMEOUT', ELASTIC_TIMEOUT))
        elastic_ttl = int(os.getenv('PADDLE_ELASTIC_TTL', ELASTIC_TTL))

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        self.start_port = None
        if cloud_utils.use_paddlecloud():
            self.trainers = os.getenv('PADDLE_TRAINERS', '')
            self.np = len(self.trainers.split(","))
            self.start_port = int(os.getenv("PADDLE_PORT", "6170"))
            self.dist_endpoints = os.getenv('DISTRIBUTED_TRAINER_ENDPOINTS', '')
            trainer_endpoints = os.getenv('PADDLE_TRAINER_ENDPOINTS', '')
            self.trainer_endpoints_list = trainer_endpoints.split(",")
        else:
            self.trainers = args.ips or os.getenv('PADDLE_TRAINERS', '')
            node_ips = self.trainers.split(",")
            self.np = len(node_ips)
            self.start_port = int(os.getenv("FLAGS_START_PORT", "6170"))
            self.dist_endpoints = self._host_to_endpoints(
                node_ips, self.devices_per_proc, self.start_port)
            self.trainer_endpoints_list = [
                "%s:%d" % (ip, self.start_port) for ip in node_ips
            ]

        self.curr_host = "%s:%d" % (self.host, self.start_port)
        logger.info(f'start job with np={self.np}')
169
        logger.info(
170
            f"trainers={self.trainers}, trainer_endpoints_list={self.trainer_endpoints_list}"
171 172 173 174
        )

        # auto correct the value of elastic_level
        # 1: Fault tolerant, 2: Elastic
175
        self.elastic_level = int(
176 177 178 179 180 181 182 183 184
            os.getenv('PADDLE_ELASTIC_FAULT_TOLERANC_LEVEL',
                      ElasticLevel.FAULT_TOLERANCE))
        if self.min_np == self.max_np or \
                (self.min_np > 0 and self.max_np == 0):
            self.elastic_level = ElasticLevel.FAULT_TOLERANCE
            logger.info(f'start job with ElasticLevel.FAULT_TOLERANCE')
        if self.min_np > 0 and self.max_np > self.min_np:
            self.elastic_level = ElasticLevel.ELASTIC
            logger.info(f'start job with ElasticLevel.ELASTIC')
185

K
kuizhiqing 已提交
186 187 188 189 190 191 192 193
        # compatible with kuberntes service discovery
        if not server and os.getenv(
                'PADDLE_ELASTIC_ETCD_SERVICE_HOST') and os.getenv(
                    'PADDLE_ELASTIC_ETCD_SERVICE_PORT'):
            server = '{}:{}'.format(
                os.getenv('PADDLE_ELASTIC_ETCD_SERVICE_HOST'),
                os.getenv('PADDLE_ELASTIC_ETCD_SERVICE_PORT'))

194 195 196 197 198 199
        logger.debug('init with server {} host {}'.format(server, host))

        self.hosts = []
        self.stopped = False

        self.sigint = 0
K
kuizhiqing 已提交
200
        self.need_sync = False
201

202 203 204
        self.elastic_startup_time = None

        if not server or ':' not in server or not name or not self.np:
205 206
            logger.info(
                'Elastic is not enabled with server {} name {} and np {}'.
207
                format(server, name, self.np))
208 209 210 211 212
            self.enable = False
            return
        else:
            self.enable = True

213
        self.etcd = etcd_client
214 215 216

        # etcd data
        self.prefix = "/paddle/" + name
K
kuizhiqing 已提交
217
        self.node_prefix = self.prefix + '/nodes'
218 219
        self.np_path = self.prefix + '/np'
        self.endpoints_path = self.prefix + '/endpoints'
K
kuizhiqing 已提交
220 221 222 223 224

        node_tag = ''.join(
            random.choice('abcdefghijklmnopqrstuvwxyz') for _ in range(6))
        self.host_path = '{}/{}{}'.format(self.node_prefix, node_tag,
                                          time.time())
225 226 227 228 229 230
        '''
        0 group mode, be aware of healthy status of other workers
        1 decouple mode, check own status only
        '''
        self.etcd.put(self.prefix, b'0')

231
        # register callback
232
        def host_call_back(event):
233 234 235 236
            self.hosts = [
                six.ensure_str(i[0])
                for i in self.etcd.get_prefix(self.node_prefix)
            ]
237
            self.hosts = list(set(self.hosts)) if self.hosts else self.hosts
238
            logger.info(
239 240
                f"host_call_back curr_host={self.curr_host}, hosts:{self.hosts}"
            )
241 242 243
            self.need_sync = True
            self.elastic_startup_time = None

244 245
        host_watch = self.etcd.add_watch_prefix_callback(
            self.node_prefix, host_call_back)
246 247 248 249 250 251 252 253 254 255 256 257
        host_lease = self.etcd.lease(elastic_ttl)

        # register etcd lease heartbeat
        def lease_heartbeat():
            while True:
                try:
                    host_lease.refresh()

                    hosts = [
                        six.ensure_str(i[0])
                        for i in self.etcd.get_prefix(self.node_prefix)
                    ]
258
                    hosts = list(set(hosts)) if hosts else hosts
259
                    logger.info(
260
                        f"[lease_heartbeat] curr_host={self.curr_host}, hosts={hosts}"
261
                    )
262
                    if self.curr_host not in hosts:
263
                        logger.info(
264
                            f"[lease_heartbeat] register host={self.curr_host}")
265
                        self.etcd.put(self.host_path,
266
                                      six.b(self.curr_host),
267 268
                                      lease=host_lease)
                except Exception as e:
269 270 271
                    logger.error(
                        "[lease_heartbeat] internal error:{} {}".format(
                            e, traceback.format_exc()))
272 273 274
                    break
                time.sleep(elastic_ttl / 3)

275 276 277
        keepalived_thread = threading.Thread(name='lease_heartbeat',
                                             target=lease_heartbeat,
                                             daemon=True)
278 279
        keepalived_thread.start()

280
        self.etcd.put(self.host_path, six.b(self.curr_host), lease=host_lease)
281 282 283

        # endpoints handle DISTRIBUTED_TRAINER_ENDPOINTS and PADDLE_TRAINERS
        self.etcd.put(self.endpoints_path,
284
                      six.b('{}|{}'.format(self.dist_endpoints, self.trainers)))
285 286

        def endpoints_call_back(event):
287
            if not self.dist_endpoints:
288 289
                return
            edps = six.ensure_str(self.etcd.get(self.endpoints_path)[0] or '')
290
            self.dist_endpoints, self.trainers = edps.split('|')
291
            logger.info("set DISTRIBUTED_TRAINER_ENDPOINTS {} ".format(
292
                self.dist_endpoints))
293 294 295 296 297
            logger.info("set PADDLE_TRAINERS {} ".format(self.trainers))

        endpoints_watch = self.etcd.add_watch_callback(self.endpoints_path,
                                                       endpoints_call_back)

298
        self.watches = [host_watch, endpoints_watch]
K
kuizhiqing 已提交
299 300
        self.launcher = None

301 302 303
    def _host_to_endpoints(self,
                           ip_port_list: list,
                           devices_per_proc: list,
304
                           start_port: int = 6170) -> str:
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        endpoint_list = []
        for ip_port in ip_port_list:
            endpoints = ip_port.split(":")
            if len(endpoints) == 2:
                ip = endpoints[0]
                port = int(endpoints[1])
            else:
                ip = endpoints
                port = start_port

            ports = [x for x in range(port, port + len(devices_per_proc))]
            endpoint_list.extend(["%s:%d" % (ip, port) for port in ports])

        dist_endpoints = ','.join(endpoint_list)
        return dist_endpoints

321 322 323
    def exit(self, completed=False):
        logger.info('manager exist completed {}'.format(completed))

K
kuizhiqing 已提交
324 325
        if self.launcher:
            self.launcher.stop()
K
kuizhiqing 已提交
326

327 328 329 330 331 332 333 334 335 336 337 338 339 340
        if not self.enable:
            return

        if completed:
            self.etcd.put(self.prefix, b'1')

        for watch in self.watches:
            self.etcd.cancel_watch(watch)
        self.etcd.delete(self.host_path)

        hosts = [i for i in self.etcd.get_prefix(self.node_prefix)]
        if len(hosts) == 0:
            self.etcd.delete_prefix(self.prefix)

341 342 343 344
    def pre_hook(self):
        if not self.args.elastic_pre_hook:
            logger.info("skip pre_hook")
            return
345
        logger.info("execute pre_hook...")
346
        current_env = copy.copy(os.environ.copy())
347 348 349 350 351
        out, err = subprocess.Popen(self.args.elastic_pre_hook,
                                    env=current_env,
                                    stdout=subprocess.PIPE,
                                    stderr=subprocess.PIPE,
                                    shell=True).communicate()
352
        if err:
R
Roc 已提交
353
            logger.warning("pre_hook exec failed")
354 355 356
        else:
            logger.info(f"pre_hook exec result: {out.decode('utf-8').strip()}")

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    def _parse_np(self, np: str):
        """
        np format is "MIN" or "MIN:MAX" 
        """
        np_str = np or os.getenv('PADDLE_ELASTIC_NP', "0")
        np_dict = np_str.split(":")
        min_np = max_np = 0
        if len(np_dict) == 1:
            # Fault tolerant
            min_np = int(np_dict[0])
            min_np = 1 if min_np <= 0 else min_np
            max_np = 1
        elif len(np_dict) == 2:
            # Elastic
            min_np = int(np_dict[0])
            max_np = int(np_dict[1])
            min_np = 1 if min_np <= 0 else min_np
            max_np = min_np if min_np > max_np else max_np
        else:
            raise ValueError(
                f'the np={np} needs to be in "MIN" or "MIN:MAX" format')

        return min_np, max_np

381 382 383 384 385 386 387 388 389 390 391 392
    def _get_host(self):
        try:
            return socket.gethostbyname(socket.getfqdn(socket.gethostname()))
        except:
            return '127.0.0.1'

    def _completed(self):
        if not self.enable:
            return True

        return int(self.etcd.get(self.prefix)[0]) == 1

393
    def _match(self, host_list: list = None):
394 395
        if host_list:
            self.hosts = host_list
396
        else:
397 398 399 400
            self.hosts = [
                six.ensure_str(i[0])
                for i in self.etcd.get_prefix(self.node_prefix)
            ]
401
        self.hosts = list(set(self.hosts)) if self.hosts else self.hosts
402

403 404 405 406 407
        if self.elastic_level == ElasticLevel.FAULT_TOLERANCE:
            if len(self.hosts) == self.np:
                return True
            else:
                return False
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        if self.elastic_level == ElasticLevel.ELASTIC:
            hosts_num = len(self.hosts)
            if hosts_num == self.np:
                return True

            if not self.elastic_startup_time:
                self.elastic_startup_time = time.time()
            if hosts_num == self.max_np:
                self.elastic_startup_time = None
                return True
            elif hosts_num >= self.min_np and hosts_num < self.max_np:
                interval_time = time.time() - self.elastic_startup_time
                if interval_time <= self.elastic_timeout:
                    logger.info(
                        f"wait for timeout, you can set value by PADDLE_ELASTIC_TIMEOUT, \
                        hosts_num={hosts_num}, min_np={self.min_np}, \
                        interval_time={interval_time}, elastic_timeout={self.elastic_timeout}"
                    )
                    return False
                return True
            else:
                self.elastic_startup_time = None
                return False
432

433 434 435 436 437 438
        return False

    def _update_endpoint(self, endpoints, hosts):
        self.etcd.put(self.endpoints_path,
                      six.b('{}|{}'.format(endpoints, hosts)))

439
    def _update_fault_tolrance(self):
440
        rank = int(os.getenv('PADDLE_TRAINER_ID', -1))
441 442 443
        logger.debug(
            f"self.curr_host={self.curr_host}, self.dist_endpoints={self.dist_endpoints}"
        )
444 445 446 447 448 449 450 451
        if self.curr_host in self.dist_endpoints:
            os.environ['DISTRIBUTED_TRAINER_ENDPOINTS'] = self.dist_endpoints
            os.environ['PADDLE_TRAINERS'] = self.trainers
            logger.info("update env DISTRIBUTED_TRAINER_ENDPOINTS {} ".format(
                self.dist_endpoints))
            logger.info("update env PADDLE_TRAINERS {} ".format(self.trainers))
            return

452
        # fault tolerance
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        idx = self.hosts.index(self.curr_host)

        # swap if self.host not in the right position
        if rank >= 0:
            self.hosts[idx] = self.hosts[rank]
            self.hosts[rank] = self.curr_host
        else:
            os.environ['PADDLE_TRAINER_ID'] = '{}'.format(idx)
        hosts = ','.join([host_port.split(":")[0] for host_port in self.hosts])
        self.args.ips = hosts
        os.environ['PADDLE_TRAINERS'] = hosts

    def _update_elastic_scale_out(self):
        host_endpoints = copy.deepcopy(self.trainer_endpoints_list)
        logger.info(
            f"elastic scale out, from {len(self.hosts)} to {self.np}, hosts={self.hosts}, host_endpoints={host_endpoints}"
        )
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        for curr_host_port in self.hosts:
            if curr_host_port not in host_endpoints:
                host_endpoints.append(curr_host_port)

        os.environ['PADDLE_TRAINER_ID'] = '{}'.format(
            host_endpoints.index(self.curr_host))
        hosts = ','.join(
            [host_port.split(":")[0] for host_port in host_endpoints])
        self.args.ips = hosts
        os.environ['PADDLE_TRAINERS'] = hosts
        self.np = len(host_endpoints)
        os.environ['PADDLE_TRAINER_ENDPOINTS'] = ','.join(host_endpoints)
        os.environ['DISTRIBUTED_TRAINER_ENDPOINTS'] = self.dist_endpoints
        self.trainer_endpoints_list = host_endpoints

    def _update_elastic_scale_in(self):
        host_endpoints = copy.deepcopy(self.trainer_endpoints_list)
        logger.info(
            f"elastic scale in, from {self.np} to {len(self.hosts)}, hosts={self.hosts}, host_endpoints={host_endpoints}"
        )
491

492
        # If scale in node from the first of the rank list, you need to minimize the movement of the rank
493
        # eg:
494 495 496 497 498 499 500 501 502 503
        #   the source trainers is:10.10.10.0,10.10.10.1,10.10.10.2,10.10.10.3
        #   10.10.10.0 is removed
        #   the new trainers is:10.10.10.3,10.10.10.1,10.10.10.2
        #   In this case, the rank of 10.10.10.1 and 10.10.10.2 remains unchanged, while the rank of 10.10.10.3 is set to rank0
        endpoints_dict = dict()
        unsorted_endpoints = []
        for id, host_port in enumerate(self.hosts):
            idx = host_endpoints.index(host_port)
            if idx <= len(self.hosts) - 1 and not endpoints_dict.get(idx):
                endpoints_dict[idx] = host_port
504
            else:
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
                unsorted_endpoints.append(host_port)

        idle_index = 0
        sorted_endpoints = []
        for idx in range(len(self.hosts)):
            if not endpoints_dict.get(idx) and len(unsorted_endpoints) > 0:
                endpoints_dict[idx] = unsorted_endpoints[idle_index]
                idle_index += 1

            sorted_endpoints.append(endpoints_dict.get(idx))

        logger.info(f"elastic scale in, sorted_endpoints={sorted_endpoints}")
        self.trainer_endpoints_list = sorted_endpoints

        ip_list = [ip_port.split(":")[0] for ip_port in sorted_endpoints]
        hosts = ','.join(ip_list)
        new_endpoints = self._host_to_endpoints(sorted_endpoints,
                                                self.devices_per_proc)

        self.args.ips = hosts
        os.environ['PADDLE_TRAINER_ID'] = '{}'.format(
            sorted_endpoints.index(self.curr_host))
        os.environ['PADDLE_TRAINERS'] = hosts
        self.np = len(sorted_endpoints)
        os.environ['PADDLE_TRAINER_ENDPOINTS'] = ','.join(sorted_endpoints)
        os.environ['DISTRIBUTED_TRAINER_ENDPOINTS'] = new_endpoints
        self._update_endpoint(new_endpoints, hosts)

    def _update_hosts(self):
        assert len(self.hosts) != 0, 'hosts empty'
        if self.elastic_level == ElasticLevel.FAULT_TOLERANCE:
            self._update_fault_tolrance()
537
        else:
538 539 540 541 542 543 544 545
            # elastic
            if len(self.hosts) == self.np:
                logger.info(f"elastic startup, hosts={self.hosts}")
                self._update_fault_tolrance()

            elif len(self.hosts) > self.np:
                # scale out
                self._update_elastic_scale_out()
546
            else:
547 548
                # scale in
                self._update_elastic_scale_in()
549 550 551 552 553

    def wait(self):
        if not self.enable:
            return

K
kuizhiqing 已提交
554
        idx = 1
555 556 557 558 559
        while not self.stopped:
            if self._match():
                logger.info('ready with hosts {}'.format(self.hosts))
                self._update_hosts()
                return
560 561
            logger.info('not ready for np {} with hosts {}'.format(
                self.np, self.hosts))
K
kuizhiqing 已提交
562
            idx += 1
K
kuizhiqing 已提交
563
            time.sleep(2)
564 565 566 567 568 569 570 571 572 573 574
        return

    def run(self, launcher):
        if self.stopped:
            return

        self.launcher = launcher(self.args)
        self.launcher.launch()

    def watch(self):

K
kuizhiqing 已提交
575 576 577
        if self.need_sync:
            self.need_sync = False

578 579
        while not self.stopped:
            ret = self.launcher.watch()
580
            logger.debug(f"launcher.watch():{ret}")
581 582 583

            if ret is not None:  # self terminated
                logger.info('job exit with code {}'.format(ret))
584 585 586 587 588
                if ret == ELASTIC_AUTO_PARALLEL_EXIT_CODE:
                    logger.info('job re-launch for auto parallel')
                    self.launcher.stop()
                    return ElasticStatus.HOLD

589 590 591 592 593
                # process is completed if ret >= 0 or error else
                completed = True if ret == 0 else False
                self.exit(completed=completed)
                if completed:
                    return ElasticStatus.COMPLETED
594
                if self.elastic_level == ElasticLevel.FAULT_TOLERANCE:
595 596 597 598
                    return ElasticStatus.RESTART
                else:
                    return ElasticStatus.ERROR

K
kuizhiqing 已提交
599
            if not self._completed() and (not self._match() or self.need_sync):
600 601 602
                self.launcher.stop()
                return ElasticStatus.HOLD

K
kuizhiqing 已提交
603
            time.sleep(2)
604

K
kuizhiqing 已提交
605 606
        if self.launcher:
            self.launcher.stop()
607

608 609 610 611 612 613 614
        return ElasticStatus.EXIT

    def signal_handler(self, sigint, frame):
        if self.enable:
            self.exit()
        self.sigint = sigint
        self.stopped = True