pool2d_op.cc 9.4 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25
inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
                         std::vector<int> paddings, nvinfer1::DimsHW *pre_pad,
                         nvinfer1::DimsHW *post_pad, int input_dims) {
N
nhzlx 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
49 50 51 52 53
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
54 55
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
56
    VLOG(4)
N
nhzlx 已提交
57 58
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
59 60 61 62 63 64 65 66 67
    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 input, but got %d input.",
                          op_desc.Input("X").size()));
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 Output, but got %d output.",
                          op_desc.Output("Out").size()));

N
nhzlx 已提交
68 69 70 71
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

N
nhzlx 已提交
72
    bool global_pooling = boost::get<bool>(op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
73 74 75 76 77 78 79 80
    std::string pool_type =
        boost::get<std::string>(op_desc.GetAttr("pooling_type"));
    std::vector<int> ksize =
        boost::get<std::vector<int>>(op_desc.GetAttr("ksize"));
    std::vector<int> strides =
        boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
    std::vector<int> paddings =
        boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
81
    bool ceil_mode = boost::get<bool>(op_desc.GetAttr("ceil_mode"));
82 83 84
    bool exclusive = op_desc.HasAttr("exclusive")
                         ? boost::get<bool>(op_desc.GetAttr("exclusive"))
                         : true;
85 86 87
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
      adaptive = boost::get<bool>(op_desc.GetAttr("adaptive"));
N
nhzlx 已提交
88

N
nhzlx 已提交
89
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
90 91
    nvinfer1::ReduceOperation reduce_operation =
        nvinfer1::ReduceOperation::kMAX;
92 93
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
94
    if (pool_type == "max") {
N
nhzlx 已提交
95
      nv_pool_type = nvinfer1::PoolingType::kMAX;
96
      reduce_operation = nvinfer1::ReduceOperation::kMAX;
97
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
98
    } else if (pool_type == "avg") {
N
nhzlx 已提交
99
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
100
      reduce_operation = nvinfer1::ReduceOperation::kAVG;
101
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
102
    } else {
103 104 105
      PADDLE_THROW(platform::errors::Fatal(
          "Wrong pool op type, the trt do not support the %s pool type.",
          pool_type));
N
nhzlx 已提交
106 107
    }

N
nhzlx 已提交
108 109 110 111 112 113
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;

114 115 116 117 118 119 120 121
    if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
      CHECK(op_desc.HasAttr("X_scale"));
      float input_scale = boost::get<float>(op_desc.GetAttr("X_scale"));
      engine_->SetTensorDynamicRange(input1, input_scale);
#endif
    }

122
    if (engine_->with_dynamic_shape()) {
123
      if (!adaptive && !global_pooling && !ceil_mode) {
124 125 126 127
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
128
        pool_layer->setAverageCountExcludesPadding(exclusive);
129
        layer = pool_layer;
130 131 132 133
      } else if (global_pooling) {
        auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
                                                  reduce_operation, 12, true);
        layer = reduce_layer;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
      } else {
#if IS_TRT_VERSION_GE(6000)
        plugin::PoolPluginDynamic *plugin =
            new plugin::PoolPluginDynamic(ceil_mode, pool_type, adaptive, ksize,
                                          strides, paddings, global_pooling);
        layer = engine_->AddPluginV2(&input1, 1, plugin);
#endif
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

N
nhzlx 已提交
152 153 154
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
155
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
N
nhzlx 已提交
156 157
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
158
      PADDLE_ENFORCE_NOT_NULL(
159 160
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
161
      auto output_name = op_desc.Output("Out")[0];
162 163 164 165 166 167 168
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
      pool_layer->setAverageCountExcludesPadding(exclusive);
      pool_layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      pool_layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, pool_layer->getOutput(0));
      layer = pool_layer;
N
nhzlx 已提交
169
      if (test_mode) {
N
nhzlx 已提交
170
        engine_->DeclareOutput(output_name);
171
      }
N
nhzlx 已提交
172 173
      return;
    }
174

175
    if (!adaptive) {
N
nhzlx 已提交
176 177 178 179
      // Under ceil mode, the pre_pad and post_pad are used to
      // record the the padding size. In some ceil mode cases,
      // we do not need padding, so we initialize the two vars to 0.

N
nhzlx 已提交
180 181
      nvinfer1::DimsHW pre_pad(0, 0);
      nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
182 183 184 185 186 187 188 189
      if (ceil_mode) {
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
            post_pad);
        PADDLE_ENFORCE_NOT_NULL(
190 191 192
            pad_layer,
            platform::errors::Fatal(
                "pad layer in poolOp converter could not be created."));
N
nhzlx 已提交
193 194 195 196 197
        input1 = pad_layer->getOutput(0);
      }
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
198 199 200
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
201 202
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
203
      pool_layer->setAverageCountExcludesPadding(exclusive);
N
nhzlx 已提交
204 205 206 207 208 209 210 211
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
212
      }
213 214 215 216
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
217 218 219 220
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool plugin layer in converter could not be created."));
221
      layer = pool_layer;
222
    }
N
nhzlx 已提交
223
    auto output_name = op_desc.Output("Out")[0];
224
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);
N
nhzlx 已提交
225 226 227 228 229 230 231 232 233
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);