expand_as_v2_op.cc 5.4 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/expand_as_v2_op.h"
#include <memory>
#include <vector>

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandAsV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ExpandAsV2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ExpandAsV2");
    auto x_dims = ctx->GetInputDim("X");
30
    auto target_shape = ctx->Attrs().Get<std::vector<int>>("target_shape");
L
lilong12 已提交
31
    PADDLE_ENFORCE_GE(
32
        target_shape.size(), static_cast<size_t>(x_dims.size()),
L
lilong12 已提交
33
        platform::errors::InvalidArgument(
34
            "The rank of target_shape must be greater than or equal "
L
lilong12 已提交
35
            "to the rank of Input(X). But received Input(X): input "
36 37 38 39 40 41 42 43
            "rank %u; received target_shape: rank %u.",
            x_dims.size(), target_shape.size()));
    PADDLE_ENFORCE_LE(target_shape.size(), MAX_RANK_SUPPORTED,
                      platform::errors::InvalidArgument(
                          "The rank of target_shape must be less than or equal "
                          "to %d. But received: rank %u.",
                          MAX_RANK_SUPPORTED, target_shape.size()));
    ctx->SetOutputDim("Out", framework::make_ddim(target_shape));
L
lilong12 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  }
};

class ExpandAsV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
             "X is the input to be expanded.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
              "The rank of Output(Out) have the same with Input(X). "
              "After expanding, size of each dimension of Output(Out) is equal "
              "to size of the corresponding dimension of Input(X) multiplying "
              "the corresponding value given by Attr(expand_times).");
59 60 61
    AddAttr<std::vector<int>>("target_shape",
                              "Expand shape for each dimension.")
        .SetDefault({});
L
lilong12 已提交
62
    AddComment(R"DOC(
63
Expand the input to the given shape.
L
lilong12 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
)DOC");
  }
};

class ExpandAsV2GradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ExpandAsV2Grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "ExpandAsV2Grad");

    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class ExpandAsV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("expand_as_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(ExpandAsV2GradNoNeedBufVarsInferer, "X");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(expand_as_v2, ops::ExpandAsV2Op, ops::ExpandAsV2OpMaker,
                  ops::ExpandAsV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::ExpandAsV2GradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(expand_as_v2_grad, ops::ExpandAsV2GradOp,
                  ops::ExpandAsV2GradNoNeedBufVarsInferer);
REGISTER_OP_CPU_KERNEL(
    expand_as_v2,
    ops::ExpandAsV2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::ExpandAsV2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::ExpandAsV2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::ExpandAsV2Kernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ExpandAsV2Kernel<paddle::platform::CPUDeviceContext, bool>);
REGISTER_OP_CPU_KERNEL(
    expand_as_v2_grad,
    ops::ExpandAsV2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ExpandAsV2GradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ExpandAsV2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ExpandAsV2GradKernel<paddle::platform::CPUDeviceContext, double>);