tree_conv_op.cc 5.9 KB
Newer Older
Z
zhaozhehao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/tree_conv_op.h"
#include <string>

namespace paddle {
namespace operators {
class TreeConvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("NodesVector",
             "(Tensor) The feature vector of every node on the tree. "
             "The shape of the feature vector must be "
             "[max_tree_node_size, feature_size].");
    AddInput("EdgeSet",
             "(Tensor) The Edges of Tree. The edge must be directional. "
             "The shape of the edge set must be [max_tree_node_size, 2].");
    AddInput("Filter",
             "(Tensor) The feature detector. "
             "The shape of the filter is "
             "[feature_size, 3, output_size, num_filters].");
    AddOutput("Out",
              "(Tensor) The feature vector of subtrees. "
              "The shape of the output tensor is [max_tree_node_size, "
              "output_size, num_filters]. "
              "The output tensor could be a new feature "
              "vector for next tree convolution layers.");
    AddAttr<int>("max_depth",
                 "(int, default: 2) The depth of feature detector.")
        .SetDefault(2)
        .GreaterThan(1);
    AddComment(R"DOC(
**Tree-Based Convolution Operator**

Tree-Based Convolution is a kind of convolution based on tree structure.
Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
which is used to classify tree structures, such as Abstract Syntax Tree.
Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
which regards multiway tree as binary tree.
The paper of Tree-Based Convolution Operator is here:
https://arxiv.org/abs/1409.5718v1
)DOC");
  }
};
class TreeConvOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasOutput("Out"));
    auto edge_dims = ctx->GetInputDim("EdgeSet");
    auto vector_dims = ctx->GetInputDim("NodesVector");
    auto filter_dims = ctx->GetInputDim("Filter");
65 66 67 68 69 70 71 72

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(edge_dims[2], 2, "Input(EdgeSet) dim[2] should be 2");
    } else {
      if (edge_dims[2] != -1) {
        PADDLE_ENFORCE_EQ(edge_dims[2], 2, "Input(EdgeSet) dim[2] should be 2");
      }
    }
Z
zhaozhehao 已提交
73 74 75 76 77 78
    PADDLE_ENFORCE_EQ(edge_dims.size(), 3,
                      "The dimension of EdgeSet Tensor should be 3");
    PADDLE_ENFORCE_EQ(vector_dims.size(), 3,
                      "The dimension of NodesVector Tensor should be 3");
    PADDLE_ENFORCE_EQ(filter_dims.size(), 4,
                      "The dimension of Filter Tensor should be 4");
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(filter_dims[1], 3, "Input(Filter) dim[1] should be 3");
      PADDLE_ENFORCE_EQ(
          filter_dims[0], vector_dims[2],
          "Input(Filter) dim[0] must equal to Input(NodesVector) dim[2]");
    } else {
      if (filter_dims[1] != -1) {
        PADDLE_ENFORCE_EQ(filter_dims[1], 3,
                          "Input(Filter) dim[1] should be 3");
      }

      if (filter_dims[0] != -1 && vector_dims[2] != -1) {
        PADDLE_ENFORCE_EQ(
            filter_dims[0], vector_dims[2],
            "Input(Filter) dim[0] must equal to Input(NodesVector) dim[2]");
      }
    }
Z
zhaozhehao 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    auto output_dims = framework::make_ddim(
        {vector_dims[0], vector_dims[1], filter_dims[2], filter_dims[3]});
    ctx->SetOutputDim("Out", output_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("NodesVector")->type(),
                                   ctx.device_context());
  }
};

class TreeConvGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto vectors_dims = ctx->GetInputDim("NodesVector");
    auto filter_dims = ctx->GetInputDim("Filter");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "the gradient of output(Out) must not be null");
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("NodesVector"))) {
      ctx->SetOutputDim(framework::GradVarName("NodesVector"), vectors_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("NodesVector")->type(),
                                   ctx.device_context());
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(tree_conv, ops::TreeConvOp, ops::TreeConvOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OPERATOR(tree_conv_grad, ops::TreeConvGradOp);

REGISTER_OP_CPU_KERNEL(
    tree_conv, ops::TreeConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TreeConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    tree_conv_grad,
    ops::TreeConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TreeConvGradKernel<paddle::platform::CPUDeviceContext, double>);