huber_loss_op.cc 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/huber_loss_op.h"
Y
yangyaming 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class HuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24 25 26
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must be initialized.");
Y
yangyaming 已提交
27

28 29
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
yangyaming 已提交
30

31
    PADDLE_ENFORCE_EQ(x_dims.size(), 2,
32 33
                      "The rank of Input(X) must be 2 and the shape is "
                      "[batch_size, 1].");
34 35 36 37 38 39 40 41 42
    if (ctx->IsRuntime() ||
        (framework::product(x_dims) > 0 && framework::product(y_dims) > 0)) {
      PADDLE_ENFORCE_EQ(x_dims, y_dims, "Shape of X and Y should be same");
    }
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[1], 1,
                        "Each row of Input(X) contains a real value, "
                        "so the 2nd dimension of Input(X) must be 1.");
    }
Y
yangyaming 已提交
43

44 45 46
    ctx->SetOutputDim("Residual", x_dims);
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->ShareLoD("X", "Out");
Y
yangyaming 已提交
47 48 49 50 51 52
  }
};

template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
53
  void Make() override {
54 55 56 57 58 59
    AddInput("X",
             "The input value of huber loss op."
             "X is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
             "The target value of huber loss op."
             "Y is a 2-D tensor with shape [batch_size, 1].");
60
    AddOutput("Residual",
61
              "Intermediate tensor to cache residual value between Y and X."
62
              "The shape is same as Input(X) and will be reused in backward.")
Y
yangyaming 已提交
63
        .AsIntermediate();
64
    AddOutput("Out",
K
kexinzhao 已提交
65 66
              "The output tensor with shape [batch_size, 1] "
              "which represents the huber loss.");
Y
yangyaming 已提交
67 68
    AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
    AddComment(R"DOC(
K
kexinzhao 已提交
69 70
HuberLoss Operator.

71 72 73 74
Huber loss is a loss function used in robust regression. We define X as the
input value and Y as the target value. Huber loss can evaluate the fitness of
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
shape of X and Y are [batch_size, 1]. The equation is:
Y
yangyaming 已提交
75

76
$$
Y
yangyaming 已提交
77
Out_{\delta}(X, Y)_i =
78
\begin{cases}
Y
yangyaming 已提交
79 80 81
0.5 * (Y_i - X_i)^2,
\quad |Y_i - X_i| \leq \delta \\
\delta * (|Y_i - X_i| - 0.5 * \delta),
82
\quad otherwise
83
\end{cases}
84
$$
Y
yangyaming 已提交
85

Y
yangyaming 已提交
86 87 88
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.

Y
yangyaming 已提交
89 90 91 92 93 94 95 96
)DOC");
  }
};

class HuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Residual"),
                   "Input(Residual) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto residual_dims = ctx->GetInputDim("Residual");
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));

    PADDLE_ENFORCE_EQ(residual_dims, x_dims);
    PADDLE_ENFORCE_EQ(out_grad_dims, x_dims);

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
Y
yangyaming 已提交
121 122 123 124 125 126 127
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
128
REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
129 130
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(huber_loss_grad, ops::HuberLossGradOp);
Q
QI JUN 已提交
131
REGISTER_OP_CPU_KERNEL(
132 133
    huber_loss, ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossKernel<paddle::platform::CPUDeviceContext, double>);
Y
yangyaming 已提交
134 135
REGISTER_OP_CPU_KERNEL(
    huber_loss_grad,
136 137
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, double>);